Skip to main content

Advertisement

Log in

Improvement in ion transport in Na3PSe4–Na3SbSe4 by Sb substitution

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Exploration of advanced solid electrolytes is a highly relevant research topic for all-solid-state batteries and sensors. One of the effective ways to improve the ion transport is cation substitution. In this work, single-phase Na3P1−x Sb x Se4 polycrystalline compounds are synthesized via solid-state reaction method. The impact of Sb substitution on the chemical structure is revealed by X-ray powder diffraction and Raman spectroscopy. Sb substitution enlarges the unit cell and thus increases the ionic conductivity of Na3P1−x Sb x Se4. Na3SbSe4 as a fully substituted compound achieves the lowest activation energy value of 0.19 eV and the highest ionic conductivity value of 3.7 mS/cm, one of the best values among sulfide solid electrolytes. Together with a low grain-boundary resistance, a single Na+ transference number, and high thermal stability, Na3SbSe4 is a very promising solid electrolyte for all-solid-state sodium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  Google Scholar 

  2. Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54:3431–3448

    Article  Google Scholar 

  3. Wen Z, Hu Y, Wu X, Han J, Gu Z (2013) Main challenges for high performance NAS battery: materials and interfaces. Adv Funct Mater 23:1005–1018

    Article  Google Scholar 

  4. Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360

    Article  Google Scholar 

  5. Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116:140–162

    Article  Google Scholar 

  6. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322

    Article  Google Scholar 

  7. Kalhoff J, Eshetu GG, Bresser D, Passerini S (2015) Safer electrolytes for lithium-ion batteries: state of the art and perspectives. Chemsuschem 8:2154–2175

    Article  Google Scholar 

  8. Jung YS, Oh DY, Nam YJ, Park KH (2015) Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes. Isr J Chem 55:472–485

    Article  Google Scholar 

  9. Zhang L, Yang K, Dong J, Lu L (2015) Recent developments in thio-LISICON solid electrolytes. J Yanshan Univ 39:95–106

    Google Scholar 

  10. Yao X, Huang B, Yin J, Peng G, Huang Z, Gao C, Liu D, Xu X (2016) All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science. Chin Phys B 25:018802

    Article  Google Scholar 

  11. Vignarooban K, Kushagra R, Elango A, Badami P, Mellander BE, Xu X, Tucker TG, Nam C, Kannan AM (2016) Current trends and future challenges of electrolytes for sodium-ion batteries. Int J Hydrog Energy 41:2829–2846

    Article  Google Scholar 

  12. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386

    Article  Google Scholar 

  13. Tatsumisago M, Nagao M, Hayashi A (2013) Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J Asian Ceram Soc 1:17–25

    Article  Google Scholar 

  14. Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61:759–770

    Article  Google Scholar 

  15. Hayashi A, Sakuda A, Tatsumisago M (2016) Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries. Front Energy Res 4:25

    Article  Google Scholar 

  16. Lin Z, Liang C (2015) Lithium–sulfur batteries: from liquid to solid cells. J Mater Chem A 3:936–958

    Article  Google Scholar 

  17. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  Google Scholar 

  18. Palomares V, Casas-Cabanas M, Castillo-Martínez E, Han MH, Rojo T (2013) Update on Na-based battery materials: a growing research path. Energy Environ Sci 6:2312–2337

    Article  Google Scholar 

  19. Hayashi A, Noi K, Sakuda A, Tatsumisago M (2012) Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun 3:856

    Article  Google Scholar 

  20. Hayashi A, Noi K, Tanibata N, Nagao M, Tatsumisago M (2014) High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4. J Power Sources 258:420–423

    Article  Google Scholar 

  21. Tanibata N, Noi K, Hayashi A, Tatsumisago M (2014) Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes. RSC Adv 4:17120–17123

    Article  Google Scholar 

  22. Berbano SS, Seo I, Bischoff CM, Schuller KE, Martin SW (2012) Formation and structure of Na2S + P2S5 amorphous materials prepared by melt-quenching and mechanical milling. J Noncryst Solids 358:93–98

    Article  Google Scholar 

  23. Jha PK, Pandey OP, Singh K (2014) Crystallization and glass transition kinetics of Na2S–P2S5-based super-ionic glasses. Part Sci Technol 33:166–171

    Article  Google Scholar 

  24. Noi K, Hayashi A, Tatsumisago M (2014) Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling. J Power Sources 269:260–265

    Article  Google Scholar 

  25. Tanibata N, Noi K, Hayashi A, Kitamura N, Idemoto Y, Tatsumisago M (2014) X-ray crystal structure analysis of sodium-ion conductivity in 94 Na3PS4·6 Na4SiS4 glass-ceramic electrolytes. Chem Electro Chem 1:1130–1132

    Google Scholar 

  26. Hibi Y, Tanibata N, Hayashi A, Tatsumisago M (2015) Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique. Solid State Ion 270:6–9

    Article  Google Scholar 

  27. Zhu Z, Chu IH, Deng Z, Ong SP (2015) Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor. Chem Mater 27:8318–8325

    Article  Google Scholar 

  28. Chu IH, Kompella CS, Nguyen H, Zhu Z, Hy S, Deng Z, Meng YS, Ong SP (2016) Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor. Sci Rep 6:33733

    Article  Google Scholar 

  29. Klerk NJJ, Wagemaker M (2016) Diffusion mechanism of the sodium-ion solid electrolyte Na3PS4 and potential improvements of halogen doping. Chem Mater 28:3122–3130

    Article  Google Scholar 

  30. Yu C, Ganapathy S, Klerk NJJ, Eck ERH, Wagemaker M (2016) Na-ion dynamics in tetragonal and cubic Na3PS4, a Na-ion conductor for solid state Na-ion batteries. J Mater Chem A 4:15095–15105

    Article  Google Scholar 

  31. Wenzel S, Leichtweiss T, Weber DA, Sann J, Zeier WG, Janek J (2016) Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium beta-alumina for protected sodium metal anodes and sodium all-solid-state batteries. ACS Appl Mater Interfaces 8:28216–28224

    Article  Google Scholar 

  32. Bo SH, Wang Y, Ceder G (2016) Structural and Na-ion conduction characteristics of Na3PSxSe4−x. J Mater Chem A 4:9044–9053

    Article  Google Scholar 

  33. Pompe C, Pfitzner A (2012) Na3SbSe3: synthesis, crystal structure determination, raman spectroscopy, and ionic conductivity. Z Anorg Allg Chem 638:2158–2162

    Article  Google Scholar 

  34. Kim SK, Mao A, Sen S, Kim S (2014) Fast Na-ion conduction in a chalcogenide glass–ceramic in the ternary system Na2Se–Ga2Se3–GeSe2. Chem Mater 26:5695–5699

    Article  Google Scholar 

  35. Richards WD, Tsujimura T, Miara LJ, Wang Y, Kim JC, Ong SP, Uechi I, Suzuki N, Ceder G (2016) Design and synthesis of the superionic conductor Na10SnP2S12. Nat Commun 7:11009

    Article  Google Scholar 

  36. Kandagal VS, Bharadwaj MD, Waghmare UV (2015) Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12. J Mater Chem A 3:12992–12999

    Article  Google Scholar 

  37. Yu Z, Shang SL, Seo JH, Wang D, Luo X, Huang Q, Chen S, Lu J, Li X, Liu ZK, Wang D (2017) Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries. Adv Mater 29:1605561

    Article  Google Scholar 

  38. Bo S-H, Wang Y, Kim JC, Richards WD, Ceder G (2016) Computational and experimental investigations of Na-ion conduction in cubic Na3PSe4. Chem Mater 28:252

    Article  Google Scholar 

  39. Tian Y, Shi T, Richards WD, Li J, Bo S-H (2017) Compatibility issues between electrodes and electrolytes in solid-state batteries. Energ Environ Sci 10:1150

    Article  Google Scholar 

  40. Zhang L, Yang K, Mi J, Lu L, Zhao L, Wang L, Li Y, Zeng H (2015) Na3PSe4: a novel chalcogenide solid electrolyte with high ionic conductivity. Adv Energy Mater 5:1501294

    Article  Google Scholar 

  41. Zhang L, Zhang D, Yang K, Yan X, Wang L, Mi J, Xu B, Li Y (2016) Vacancy-contained tetragonal Na3SbS4 superionic conductor. Adv Sci 3:1600089

    Article  Google Scholar 

  42. Trevey JE, Jung YS, Lee SH (2010) Preparation of Li2S–GeSe2–P2S5 electrolytes by a single step ball milling for all-solid-state lithium secondary batteries. J Power Sources 195:4984–4989

    Article  Google Scholar 

  43. Kim J, Yoon Y, Eom M, Shin D (2012) Characterization of amorphous and crystalline Li2S–P2S5–P2Se5 solid electrolytes for all-solid-state lithium ion batteries. Solid State Ion 225:626–630

    Article  Google Scholar 

  44. Liu Z, Tang Y, Wang Y, Huang F (2014) High performance Li2S–P2S5 solid electrolyte induced by selenide. J Power Sources 260:264–267

    Article  Google Scholar 

  45. Yang K, Dong J, Zhang L, Li Y, Wang L, Stevenson J (2015) Dual doping: an effective method to enhance the electrochemical properties of Li10GeP2S12-based solid electrolytes. J Am Ceram Soc 98:3831–3835

    Article  Google Scholar 

  46. Rodriguez-Carvajal J (1992) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69

    Article  Google Scholar 

  47. Hayashi A, Muramatsu H, Ohtomo T, Hama S, Tatsumisago M (2014) Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. J Alloys Compd 591:247–250

    Article  Google Scholar 

  48. Wan H, Peng G, Yao X, Yang J, Cui P, Xu X (2016) Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. Energy Storage Mater 4:59–65

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (51525205) and the Science Foundation of Hebei Education Department (ZD2016033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Yang, K., Zhang, L. et al. Improvement in ion transport in Na3PSe4–Na3SbSe4 by Sb substitution. J Mater Sci 53, 1987–1994 (2018). https://doi.org/10.1007/s10853-017-1618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1618-0

Keywords

Navigation