Skip to main content
Log in

The evolution of α-MnO2 from hollow cubes to hollow spheres and their electrochemical performance for supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The evolution of α-MnO2 from hollow cubes to hollow spheres was achieved by using MnCO3 as the template. The as-obtained α-MnO2 crystals were characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET). The as-synthesized α-MnO2 hollow cubes (with the side length of about 2 µm) and hollow spheres (with the diameter of about 2 µm) were uniform particles. The as-prepared α-MnO2 hollow spheres have a large specific surface area (417 m2 g−1). A process has been proposed for the evolution of MnCO3 templates from cubes to spheres. Then, the evolution of α-MnO2 was achieved by two-step mechanism with the treatment of previously obtained MnCO3 templates. Cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS) measurements were used to characterize the electrochemical performances of the as-synthesized α-MnO2. The initial specific capacitance at a current density of 1 A g−1 of the as-prepared α-MnO2 hollow spheres is 203 F g−1, which is higher than that of α-MnO2 hollow cubes (152 F g−1). In addition, the α-MnO2 hollow cubes retain 93% and the α-MnO2 hollow spheres retain 80% of the initial specific capacitance after 2000 charge/discharge cycles at 2 A g−1. The α-MnO2 hollow spheres-based supercapacitors exhibit 38.7 W h kg−1 at a power density of 1000 W kg−1 and maintain 7.8 W h kg−1 at a high power density of 10028 W kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Zhu Y, Murali S, Stoller MD, Ganesh K, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541

    Article  Google Scholar 

  2. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15):2483–2498

    Article  Google Scholar 

  3. Park MS, Wang GX, Kang YM, Wexler D, Dou SX, Liu HK (2007) Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew Chem 119(5):764–767

    Article  Google Scholar 

  4. Li J, Yu Y, Bao S-J, Q-q Sun (2015) Experimental investigation of the important influence of pretreatment process of thermally exfoliated graphene on their microstructure and supercapacitor performance. Electrochim Acta 180:187–195

    Article  Google Scholar 

  5. Kim S, Hwang S, Hyun S (2005) Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J Mater Sci 40(3):725–731. doi:10.1007/s10853-005-6313-x

    Article  Google Scholar 

  6. Ma F-X, Yu L, Xu C-Y, Lou XWD (2016) Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ Sci 9(3):862–866

    Article  Google Scholar 

  7. Chen J, Wang X, Wang J, Lee PS (2016) Sulfidation of NiMn-layered double hydroxides/graphene oxide composites toward supercapacitor electrodes with enhanced performance. Adv Energy Mater 6:1501745

    Article  Google Scholar 

  8. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M, Titirici MM (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22(45):5202–5206

    Article  Google Scholar 

  9. Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16(16):3184–3190

    Article  Google Scholar 

  10. Bag S, Raj CR (2016) Hierarchical three-dimensional mesoporous MnO2 nanostructures for high performance aqueous asymmetric supercapacitors. J Mater Chem A 4(2):587–595

    Article  Google Scholar 

  11. Qian Y, Lu S, Gao F (2011) Preparation of MnO2/graphene composite as electrode material for supercapacitors. J Mater Sci 46(10):3517–3522. doi:10.1007/s10853-011-5260-y

    Article  Google Scholar 

  12. Hsu Y-K, Chen Y-C, Lin Y-G, Chen L-C, Chen K-H (2011) Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy. Chem Commun 47(4):1252–1254

    Article  Google Scholar 

  13. Guo CX, Chitre AA, Lu X (2014) DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors. Phys Chem Chem Phys 16(10):4672–4678

    Article  Google Scholar 

  14. Lu X, Zhai T, Zhang X, Shen Y, Yuan L, Hu B, Gong L, Chen J, Gao Y, Zhou J (2012) WO3-x@ Au@ MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater 24(7):938–944

    Article  Google Scholar 

  15. Wang L, Deng D, Salley SO, Ng KS (2015) Facile synthesis of 3-D composites of MnO2 nanorods and holey graphene oxide for supercapacitors. J Mater Sci 50(19):6313–6320. doi:10.1007/s10853-015-9169-8

    Article  Google Scholar 

  16. Choi C, Sim HJ, Spinks GM, Lepró X, Baughman RH, Kim SJ (2016) Elastomeric and Dynamic MnO2/CNT Core-Shell Structure Coiled Yarn Supercapacitor. Adv Energy Mater 6:1502119

    Article  Google Scholar 

  17. Vinny R, Chaitra K, Venkatesh K, Nagaraju N, Kathyayini N (2016) An excellent cycle performance of asymmetric supercapacitor based on bristles like α-MnO2 nanoparticles grown on multiwalled carbon nanotubes. J Power Sources 309:212–220

    Article  Google Scholar 

  18. Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3(43):21380–21423

    Article  Google Scholar 

  19. Subramanian V, Zhu H, Wei B (2006) Nanostructured MnO2: hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. J Power Sources 159(1):361–364

    Article  Google Scholar 

  20. Tang C-L, Wei X, Jiang Y-M, Wu X-Y, Han LN, Wang K-X, Chen J-S (2015) Cobalt-doped MnO2 hierarchical yolk-shell spheres with improved supercapacitive performance. J Phys Chem C 119(16):8465–8471

    Article  Google Scholar 

  21. Yu GH, Hu LB, Liu NA, Wang HL, Vosgueritchian M, Yang Y, Cui Y, Bao ZA (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11(10):4438–4442. doi:10.1021/nl2026635

    Article  Google Scholar 

  22. Yu GH, Xie X, Pan LJ, Bao ZN, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2):213–234. doi:10.1016/j.nanoen.2012.10.006

    Article  Google Scholar 

  23. Hedley GJ, Ward AJ, Alekseev A, Howells CT, Martins ER, Serrano LA, Cooke G, Ruseckas A, Samuel ID (2013) Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. Nat Commun 4:2867

    Article  Google Scholar 

  24. Hsieh C-T, Tzou D-Y, Lee W-Y, Hsu J-P (2016) Deposition of MnO2 nanoneedles on carbon nanotubes and graphene nanosheets as electrode materials for electrochemical capacitors. J Alloy Compd 660:99–107

    Article  Google Scholar 

  25. Wang F, Wen Z, Shen C, Wu X, Liu J (2016) Synthesis of α-MnO2 nanowires modified by Co3O4 nanoparticles as a high-performance catalyst for rechargeable Li–O2 batteries. Phys Chem Chem Phys 18(2):926–931

    Article  Google Scholar 

  26. Hu X, Zhu S, Huang H, Zhang J, Xu Y (2016) Controllable synthesis and characterization of α-MnO2 nanowires. J Cryst Growth 434:7–12

    Article  Google Scholar 

  27. Babakhani B, Ivey DG (2010) Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors. J Power Sources 195(7):2110–2117

    Article  Google Scholar 

  28. Aghazadeh M, Asadi M, Maragheh MG, Ganjali MR, Norouzi P, Faridbod F (2016) Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics. Appl Surf Sci 364:726–731

    Article  Google Scholar 

  29. Ma R, Bando Y, Zhang L, Sasaki T (2004) Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv Mater 16(11):918–922

    Article  Google Scholar 

  30. Liu Z, Ma R, Ebina Y, Takada K, Sasaki T (2007) Synthesis and delamination of layered manganese oxide nanobelts. Chem Mater 19(26):6504–6512

    Article  Google Scholar 

  31. Munaiah Y, Raj BGS, Kumar TP, Ragupathy P (2013) Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior. J Mater Chem A 1(13):4300–4306

    Article  Google Scholar 

  32. Maiti S, Pramanik A, Mahanty S (2015) Influence of imidazolium-based ionic liquid electrolytes on the performance of nano-structured MnO2 hollow spheres as electrochemical supercapacitor. RSC Adv 5(52):41617–41626

    Article  Google Scholar 

  33. Zhao S, Liu T, Shi D, Zhang Y, Zeng W, Li T, Miao B (2015) Hydrothermal synthesis of urchin-like MnO2 nanostructures and its electrochemical character for supercapacitor. Appl Surf Sci 351:862–868

    Article  Google Scholar 

  34. Cao J, Zhu Y, Bao K, Shi L, Liu S, Qian Y (2009) Microscale Mn2O3 hollow structures: sphere, cube, ellipsoid, dumbbell, and their phenol adsorption properties. J Phys Chem C 113(41):17755–17760

    Article  Google Scholar 

  35. Subramanian V, Zhu H, Vajtai R, Ajayan P, Wei B (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109(43):20207–20214

    Article  Google Scholar 

  36. Li S, Qi L, Lu L, Wang H (2013) Carbon spheres-assisted strategy to prepare mesoporous manganese dioxide for supercapacitor applications. J Solid State Chem 197:29–37

    Article  Google Scholar 

  37. Cao X, Zheng B, Rui X, Shi W, Yan Q, Zhang H (2014) Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew Chem Int Ed 53(5):1404–1409

    Article  Google Scholar 

  38. An KH, Kim WS, Park YS, Jeong HJ, Choi YC, Moon J-M, Bae DJ, Lim SC, Lee YH (2001) Supercapacitors using singlewalled carbon nanotube electrodes. Nanonetwork materials: fullerenes, nanotubes, and related systems, vol 1. AIP Publishing, New York, pp 241–244

    Google Scholar 

  39. Wang Z (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104(6):1153–1175

    Article  Google Scholar 

  40. Im J-H, Jang I-H, Pellet N, Grätzel M, Park N-G (2014) Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol 9(11):927–932

    Article  Google Scholar 

  41. Chen W, Kuang Q, Xie Z (2015) Morphology evolution of NaTaO3 submicrometer single-crystals: from cubes to quasi-spheres. Sci China Mater 58(4):281–288

    Article  Google Scholar 

  42. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  Google Scholar 

  43. Han D, Jing X, Xu P, Ding Y, Liu J (2014) Facile synthesis of hierarchical hollow ε-MnO2 spheres and their application in supercapacitor electrodes. J Solid State Chem 218:178–183

    Article  Google Scholar 

  44. Chi HZ, Yin S, Qin H, Su K (2016) The preparation of MnO2 hollow spheres for electrochemical capacitor. Mater Lett 162:131–134

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Project number XDJK2016E001, for Innovation and Entrepreneurship Students; Project number XDJK2016C003) and the Ninth Undergraduate Science and Technology Innovation Project 20162303008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, G., Liu, X., Li, Q. et al. The evolution of α-MnO2 from hollow cubes to hollow spheres and their electrochemical performance for supercapacitors. J Mater Sci 52, 10915–10926 (2017). https://doi.org/10.1007/s10853-017-1116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1116-4

Keywords

Navigation