Skip to main content
Log in

Fabrication of TiO2/PI composite nanofibrous membrane with enhanced photocatalytic activity and mechanical property via simultaneous electrospinning

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanotitanium dioxide (TiO2)-based materials have attracted an increasing attention in the application of photocatalysis degradation. In this work, a composite TiO2/PI membrane constructed with anatase TiO2 and PI nanofibers in an interwoven structure was successfully fabricated by simultaneous electrospinning with a post-annealing process. The results showed that the TiO2 nanofibers endowed the composite membrane with photocatalytic activity, while the PI nanofibers as the structural reinforcements in the composite membrane could remarkably improve the mechanical property of membrane. Most importantly, the photocatalytic activities and mechanical properties of composite membranes could be further tuned by controlling the TiO2/PI mass ratio. Our study indicated that the combination of TiO2 and PI nanofibers via simultaneous electrospinning with a post-annealing process offers a new strategy to construct advanced nano-TiO2-based materials, which shows a great potential in the application of photocatalytic degradation of toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Kim J, Zhang P, Li J, Wang J, Fu P (2014) Photocatalytic degradation of gaseous toluene and ozone under UV254 + 185 nm irradiation using a Pd-deposited TiO2 film. Chem Eng J 252:337–345

    Article  Google Scholar 

  2. Nie L, Yu J, Li X, Cheng B, Liu G, Jaroniec M (2013) Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environ Sci Technol 47:2777–2783

    Article  Google Scholar 

  3. James RN, Collins J, Tyl Rochelle W, Krivanek Neil, Esmen Nurtan A, Hall Thomas A (2001) A review of adverse pregnancy outcomes and formaldehyde. Regul Toxicol Pharmacol 34:17–34

    Article  Google Scholar 

  4. Yan Z, Xu Z, Yu J, Jaroniec M (2015) Highly active mesoporous ferrihydrite supported pt catalyst for formaldehyde removal at room temperature. Environ Sci Technol 49:6637–6644

    Article  Google Scholar 

  5. Daisey WJAJM, Apte MG (2003) Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 13:53–64

    Article  Google Scholar 

  6. Lannoy A, Kania N, Bleta R, Fourmentin S, Machut-Binkowski C, Monflier E, Ponchel A (2016) Photocatalysis of volatile organic compounds in water: towards a deeper understanding of the role of cyclodextrins in the photodegradation of toluene over titanium dioxide. J Colloid Interface Sci 461:317–325

    Article  Google Scholar 

  7. Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43:2229–2246

    Article  Google Scholar 

  8. Zuo GM, Cheng ZX, Chen H, Li GW, Miao T (2006) Study on photocatalytic degradation of several volatile organic compounds. J Hazard Mater 128:158–163

    Article  Google Scholar 

  9. Renzhong Zhang XW, Song Jun, Si Yang, Zhuang Xingmin, Jianyong Yu, Ding Bin (2015) In situ synthesis of flexible hierarchical TiO2 nanofibrous membranes with enhanced photocatalytic activity. J Mater Chem A 3:22136–22144

    Article  Google Scholar 

  10. Al Momani F (2007) Treatment of air containing volatile organic carbon: elimination and post treatment. Environ Eng Sci 24:1038–1047

    Article  Google Scholar 

  11. Yang Y, Wang H, Li X, Wang C (2009) Electrospun mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis. Mater Lett 63:331–333

    Article  Google Scholar 

  12. Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718

    Article  Google Scholar 

  13. Wang X, Choi J, Mitchell DRG, Truong YB, Kyratzis IL, Caruso RA (2013) Enhanced photocatalytic activity: macroporous electrospun mats of mesoporous Au/TiO2 nanofibers. ChemCatChem 5:2646–2654

    Article  Google Scholar 

  14. Tang C, Hu M, Fang M, Liu Y, Wu X, Liu W, Wang M, Huang Z (2015) Photocatalytic property of TiO2-vermiculite composite nanofibers via electrospinning. Nanoscale Res Lett 10:276–281

    Article  Google Scholar 

  15. Shen J, Wu Y-N, Fu L, Zhang B, Li F (2013) Preparation of doped TiO2 nanofiber membranes through electrospinning and their application for photocatalytic degradation of malachite green. J Mater Sci 49:2303–2314. doi:10.1007/s10853-013-7928-y

    Article  Google Scholar 

  16. Mondal K, Bhattacharyya S, Sharma A (2014) Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2 nanofiber mats. Ind Eng Chem Res 53:18900–18909

    Article  Google Scholar 

  17. Madhugiri S, Sun B, Smirniotis PG, Ferraris JP, Balkus KJ (2004) Electrospun mesoporous titanium dioxide fibers. Microporous Mesoporous Mater 69:77–83

    Article  Google Scholar 

  18. Du P, Song L, Xiong J, Cao H (2013) Photocatalytic degradation of Rhodamine B using electrospun TiO2 and ZnO nanofibers: a comparative study. J Mater Sci 48:8386–8392. doi:10.1007/s10853-013-7649-2

    Article  Google Scholar 

  19. Alves AK, Berutti FA, Bergmann CP (2013) Visible and UV photocatalytic characterization of Sn–TiO2 electrospun fibers. Catal Today 208:7–10

    Article  Google Scholar 

  20. Zhang X, Xu S, Han G (2009) Fabrication and photocatalytic activity of TiO2 nanofiber membrane. Mater Lett 63:1761–1763

    Article  Google Scholar 

  21. Jiang S, Duan G, Chen L, Hu X, Hou H (2015) Mechanical performance of aligned electrospun polyimide nanofiber belt at high temperature. Mater Lett 140:12–15

    Article  Google Scholar 

  22. Li XJ, Wei Q, Wang X (2014) Preparation of magnetic polyimide/maghemite nanocomposite fibers by electrospinning. High Perform Polym 26:810–816

    Article  Google Scholar 

  23. Liu J, Huang J, Wujcik EK, Qiu B, Rutman D, Zhang X, Salazard E, Wei S, Guo Z (2015) Hydrophobic electrospun polyimide nanofibers for self-cleaning materials. Macromol Mater Eng 300:358–368

    Article  Google Scholar 

  24. Wang Q, Song W-L, Wang L, Song Y, Shi Q, Fan L-Z (2014) Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries. Electrochim Acta 132:538–544

    Article  Google Scholar 

  25. Zha J-W, Sun F, Wang S-J, Wang D, Lin X, Chen G, Dang Z-M (2014) Improved mechanical and electrical properties in electrospun polyimide/multiwalled carbon nanotubes nanofibrous composites. J Appl Phys 116:134104–134108

    Article  Google Scholar 

  26. Mallakpour S, Dinari M (2012) Fabrication of polyimide/titania nanocomposites containing benzimidazole side groups via sol–gel process. Prog Org Coat 75:373–378

    Article  Google Scholar 

  27. Yu JC, Ho W, Yu J, Yip H, Wong PK, Zhao J (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39:1175–1179

    Article  Google Scholar 

  28. Li X, Wang N, Fan G, Yu J, Gao J, Sun G, Ding B (2015) Electreted polyetherimide-silica fibrous membranes for enhanced filtration of fine particles. J Colloid Interface Sci 439:12–20

    Article  Google Scholar 

  29. Vaquette C, Cooper-White JJ (2011) Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater 7:2544–2557

    Article  Google Scholar 

  30. Mazoniene E, Bendoraitiene J, Peciulyte L, Diliunas S, Zemaitaitis A (2006) (Co)polyimides from commonly used monomers, and their nanocomposites. Prog Solid State Chem 34:201–211

    Article  Google Scholar 

  31. Ding M (2007) Isomeric polyimides. Prog Polym Sci 32:623–668

    Article  Google Scholar 

  32. Cha DI, Kim KW, Chu GH, Kim HY (2006) Mechanical behaviors and characterization of electrospun polysulfone/polyurethane blend nonwovens. Macromol Res 14:331–337

    Article  Google Scholar 

  33. Wan H, Wang N, Yang J, Si Y, Chen K, Ding B, Sun G, El-Newehy M, Al-Deyab SS, Yu J (2014) Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J Colloid Interface Sci 417:18–26

    Article  Google Scholar 

  34. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  Google Scholar 

  35. Mohamed A, El-Sayed R, Osman TA, Toprak MS, Muhammed M, Uheida A (2016) Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water. Environ Res 145:18–25

    Article  Google Scholar 

  36. Ramirez AM, Demeestere K, De Belie N, Mäntylä T, Levänen E (2010) Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential. Build Environ 45:832–838

    Article  Google Scholar 

  37. Nie L, Zheng Y, Yu J (2014) Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content. Dalton Trans 43:12935–12942

    Article  Google Scholar 

  38. Dai Z, Huang C, Li M, Su J, Guo Y, Xu H, Ke Q (2016) Nanocrystalline MnO2 on an activated carbon fiber for catalytic formaldehyde removal. RSC Adv. doi:10.1039/C6RA15463H

    Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the Project of Local Capacity Construction of Shanghai Municipal Science and Technology Commission (No. 14520502800), National Natural Science Foundation of China (No. 81501597), Yangfan Program of Shanghai Science and Technology Committee (NO. 15YF1408900) and China Postdoctoral Science Foundation (2015M580341).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Xu or Qinfei Ke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 925 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Su, J., Guo, Y. et al. Fabrication of TiO2/PI composite nanofibrous membrane with enhanced photocatalytic activity and mechanical property via simultaneous electrospinning. J Mater Sci 52, 5404–5416 (2017). https://doi.org/10.1007/s10853-017-0785-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0785-3

Keywords

Navigation