Skip to main content

Advertisement

Log in

Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of sacrificial reagents (SRs) on photocatalytic H2 evolution rate over different photocatalysts was systematically studied. Zn0.5Cd0.5S, graphitic carbon nitride (g-C3N4), and TiO2 were chosen as typical photocatalysts, while alcohols, amines, carboxylic acids, and inorganic Na2S/Na2SO3 were chosen as SRs. The results indicate that Na2S/Na2SO3, methanol, and triethanolamine are the most suitable SRs for Zn0.5Cd0.5S, TiO2, and g-C3N4, respectively. It was found that in selecting organic SRs, both the permittivity and oxidation potential have profound effects on the H2 production efficiency, which will provide basis for choosing appropriate SRs for different photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(29):964–967

    Article  Google Scholar 

  2. Hao XH, Guo LJ, Mao X, Zhang XM, Chen XJ (2003) Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. Int J Hydrogen Energy 28:55–64

    Article  Google Scholar 

  3. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6(1):24–28

    Article  Google Scholar 

  4. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(7):37–38

    Article  Google Scholar 

  5. Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414(6864):625–627

    Article  Google Scholar 

  6. Li Q, Guo BD, Yu JG, Ran JR, Zhang BH, Yan HJ, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133(28):10878–10884

    Article  Google Scholar 

  7. Lingampalli SR, Gautam UK, Rao CNR (2013) Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures. Energy Environ Sci 6(12):3589–3594

    Article  Google Scholar 

  8. Xiang QJ, Yu JG (2013) Graphene-based photocatalysts for hydrogen generation. J Phys Chem Lett 4:753–759

    Article  Google Scholar 

  9. Tsuji I, Kato H, Kobayashi H, Kudo A (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1−x)S2 solid solution photocatalysts. J Am Chem Soc 126(41):13407–13413

    Article  Google Scholar 

  10. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    Article  Google Scholar 

  11. Li YX, Wang H, Peng SQ (2014) Tunable photodeposition of MoS2 onto a composite of reduced graphene oxide and CdS for synergic photocatalytic hydrogen generation. J Phys Chem C 118(34):19842–19848

    Article  Google Scholar 

  12. Wang X, Xu Q, Li MR, Shen S, Wang XL, Wang YC, Feng ZC, Shi JY, Han HX, Li C (2012) Photocatalytic overall water splitting promoted by an alpha-beta phase junction on Ga2O3. Angew Chem Int Ed 51(52):13089–13092

    Article  Google Scholar 

  13. Kumar S, Khanchandani S, Thirumal M, Ganguli AK (2014) Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures. ACS Appl Mater Interfaces 6(15):13221–13233

    Article  Google Scholar 

  14. Zong X, Yan HJ, Wu GP, Ma GJ, Wen FY, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130(23):7176

    Article  Google Scholar 

  15. Yan HJ, Yang JH, Ma GJ, Wu GP, Zong X, Lei ZB, Shi JY, Li C (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266(2):165–168

    Article  Google Scholar 

  16. Berr MJ, Wagner P, Fischbach S, Vaneski A, Schneider J, Susha AS, Rogach AL, Jackel F, Feldmann J (2012) Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl Phys Lett 100:2239031–2239033

    Article  Google Scholar 

  17. Simon T, Bouchonville N, Berr MJ, Vaneski A, Adrović A, Volbers D et al (2014) Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat Mater 13:1013–1018

    Article  Google Scholar 

  18. Hernández-Gordillo A, Mendoza-Damián G, Gomez R (2016) Blue-photodecomposition of hydrazine in aqueous solution for H2 production by using CdS photocatalyst. J Chem Technol Biotechnol 91:2179–2184

    Article  Google Scholar 

  19. Zhang J, Yu JG, Jaroniec M, Gong JR (2012) Noble metal-free reduced graphene oxide-ZnxCd1−xS nanocomposite with enhanced solar photocatalytic H2 production performance. Nano Lett 12(9):4584–4589

    Article  Google Scholar 

  20. Li Q, Meng H, Zhou P, Zheng YQ, Wang J, Yu JG, Gong JR (2013) Zn1−xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2 production activity. ACS Catal 3(5):882–889

    Article  Google Scholar 

  21. Zhang WJ, Zhong XH (2011) Facile synthesis of ZnS–CuInS2-alloyed nanocrystals for a color-tunable fluorochrome and photocatalyst. Inorg Chem 50(9):4065–4072

    Article  Google Scholar 

  22. Zhang GG, Zhang MW, Ye XX, Qiu XQ, Lin S, Wang XC (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26(5):805–809

    Article  Google Scholar 

  23. Liu J, Liu Y, Liu NY, Han YZ, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang ZH (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225):970–974

    Article  Google Scholar 

  24. Niu P, Zhang LL, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22(22):4763–4770

    Article  Google Scholar 

  25. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  Google Scholar 

  26. Jagadeeswararao M, Dey S, Nag A, Rao R (2015) Visible light-induced hydrogen generation using colloidal (ZnS)0.4–(AgInS2)0.6 nanocrystals capped by S2− ion. J Mater Chem A 3(16):8276–8279

    Article  Google Scholar 

  27. Liu YX, Zhang BS, Luo LF, Chen XY, Wang ZL, Wu EL, Su DS, Huang WX (2015) TiO2/Cu2O core/ultrathin shell nanorods as efficient and stable photocatalysts for water reduction. Angew Chem Int Ed 54(50):15260–15265

    Article  Google Scholar 

  28. Li LL, Cheng B, Wang YX, Yu JG (2015) Enhanced photocatalytic H2 production activity of bicomponent NiO/TiO2 composite nanofibers. J Colloid Interface Sci 449:115–121

    Article  Google Scholar 

  29. Liu G, Niu P, Sun CH, Smith SC, Chen ZG, Lu GQ, Cheng HM (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132(33):11642–11648

    Article  Google Scholar 

  30. Hong JD, Wang YS, Wang YB, Zhang W, Xu R (2013) Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water. ChemSusChem 6(12):2263–2268

    Article  Google Scholar 

  31. Lingampalli SR, Gautam UK, Rao CNR (2013) Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures. Energy Environ Sci 6:3589

    Article  Google Scholar 

  32. Choi J, Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2008) Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light. J Mater Chem 18:2371–2378

    Article  Google Scholar 

  33. Shen SL, Ma AP, Tang ZH, Han Z, Wang MJ, Wang Z, Zhi LJ, Yang JH (2015) Facile synthesis of Zn0.5Cd0.5S ultrathin nanorods on reduced graphene oxide for enhanced photocatalytic hydrogen evolution under visible light. ChemCatChem 7(4):609–615

    Article  Google Scholar 

  34. Ma AP, Tang ZH, Shen SL, Zhi LJ, Yang JH (2015) Controlled synthesis of ZnxCd1−xS nanorods and their composite with RGO for high-performance visible-light photocatalysis. RSC Adv 5(35):27829–27836

    Article  Google Scholar 

  35. Zhang JS, Chen XF, Takanabe K, Maeda K, Domen K, Epping JD, Fu XZ, Antonietti M, Wang XC (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed 49(2):441–444

    Article  Google Scholar 

  36. Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  Google Scholar 

  37. Zhou CY, Ren ZF, Tan SJ, Ma ZB, Mao XC, Dai DX, Fan HJ, Yang XM, LaRue J, Cooper R, Wodtke AM, Wang Z, Li ZY, Wang B, Yang JL, Hou JG (2010) Site-specific photocatalytic splitting of methanol on TiO2 (110). Chem Sci 1(5):575–580

    Article  Google Scholar 

  38. Galinska A, Walendziewski J (2005) Photocatalytic water splitting over Pt–TiO2 in the presence of sacrificial reagents. Energy Fuels 19(3):1143–1147

    Article  Google Scholar 

  39. Sasikala R, Sudarsan V, Sudakar C, Naik R, Sakuntala T, Bharadwaj SR (2008) Enhanced photocatalytic hydrogen evolution over nanometer sized Sn and Eu doped titanium oxide. Int J Hydrogen Energy 33(19):4966–4973

    Article  Google Scholar 

  40. Sasikala R, Shirole A, Sudarsan V, Sakuntala T, Sudakar C, Naik R, Bharadwaj SR (2009) Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route: photocatalytic activity for hydrogen generation. Int J Hydrogen Energy 34(9):3621–3630

    Article  Google Scholar 

  41. Hesleitner P, Kallay N, Matijevit E (1991) Adsorption at solid/liquid interfaces. 6. The effect of methanol and ethanol on the ionic equilibria at the hematite/water interface. Langmuir 7:178–184

    Article  Google Scholar 

  42. Chang K, Mei ZW, Wang T, Kang Q, Ouyang SX, Ye JH (2014) MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8(7):7078–7087

    Article  Google Scholar 

  43. Zhang HZ, Chen B, Banfield JF (2010) Particle size and pH effects on nanoparticle dissolution. J Phys Chem C 114(35):14876–14884

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of NSFC (21101166, 51272157, 51472160), Key Basic Research Program of Shanghai Municipal Science and Technology Commission (13NM1401102), Innovation Program of Shanghai Municipal Education Commission (14YZ084), and the Hujiang Foundation of China (B14006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuling Shen or Junhe Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Shen, S., Li, L. et al. Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts. J Mater Sci 52, 5155–5164 (2017). https://doi.org/10.1007/s10853-017-0752-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0752-z

Keywords

Navigation