Skip to main content

Advertisement

Log in

Electroactive phase nucleation and non-isothermal crystallization kinetics study in [DEMM][TFSI] ionic liquid incorporated P(VDF-HFP) co-polymer membranes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electroactive phase nucleation and subsequent non-isothermal crystallization kinetics of different extents of aliphatic quaternary ammonium-based ionic liquid (IL) N,N-diethyl-N-(2-methacryloylethyl)-N-methylammonium bis(trifluoromethylsulfonyl) imide ([DEMM][TFSI]) incorporated poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) co-polymer membranes have been explored using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Different macroscopic models are used to assess the overall non-isothermal crystallization parameters of the membranes. The effective activation energy (E X ) of the crystallization process of the membranes is estimated by the differential isoconversional methods of Friedman. The analysis of DSC responses, infrared spectra, and X-ray diffractograms of the different IL incorporated polymer membranes reveal that a possible interaction between the ions of the IL and disordered dipoles of the co-polymer in the melt state, essentially delays the overall crystallization process and preferentially yield different electroactive (all trans or trans-gauche) chain conformations at different cooling rates of crystallization. The proportional variation of effective activation energy and the value of the Hoffman–Lauritzen crystal growth parameters, adopting the method proposed by Vyazovkin, with the IL content also support the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Pracella M (2013) Crystallization of polymer blends. In: Piorkowska E, Rutledge GC (eds) Handbook of polymer crystallization. Wiley, Hoboken, pp 287–326. doi:10.1002/9781118541838.ch10

    Chapter  Google Scholar 

  2. Sharma M, Madras G, Bose S (2014) Process induced electroactive [small beta]-polymorph in PVDF: effect on dielectric and ferroelectric properties. Phys Chem Chem Phys 16(28):14792–14799. doi:10.1039/c4cp01004c

    Article  Google Scholar 

  3. Broadhurst MG, Davis GT (1984) Physical basis for piezoelectricity in PVDF. Ferroelectrics 60(1):3–13. doi:10.1080/00150198408017504

    Article  Google Scholar 

  4. Kim NK, Lin RJT, Fakirov S, Aw K, Bhattacharyya D (2014) Nanofibrillar poly(vinylidene fluoride): preparation and functional properties. Int J Polym Mater Polym Biomater 63(1):23–32. doi:10.1080/00914037.2013.769244

    Article  Google Scholar 

  5. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706. doi:10.1016/j.progpolymsci.2013.07.006

    Article  Google Scholar 

  6. Kim SH, Ahn SH, Hirai T (2003) Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer 44(19):5625–5634. doi:10.1016/S0032-3861(03)00623-2

    Article  Google Scholar 

  7. Sencadas V, Martins P, Pitães A, Benelmekki M, Gómez Ribelles JL, Lanceros-Mendez S (2011) Influence of ferrite nanoparticle type and content on the crystallization kinetics and electroactive phase nucleation of poly(vinylidene fluoride). Langmuir 27(11):7241–7249. doi:10.1021/la2008864

    Article  Google Scholar 

  8. Atanassov A, Kostov G, Kiryakova D, Borisova-Koleva L (2012) Properties of clay nanocomposites based on poly (vinylidene fluoride-co-hexafluoropropylene). J Thermoplast Compos Mater. doi:10.1177/0892705712443249

    Google Scholar 

  9. Liu X-Q, Li R-H, Pang Y-J, Ni H-Y, Chen J (2014) Crystallization kinetics of multiwalled carbon nanotube filled poly (vinylidene fluoride) composites: influence of interfacial interactions. Polym Plast Technol Eng 53(6):539–549. doi:10.1080/03602559.2013.854384

    Article  Google Scholar 

  10. Shi N, Dou Q (2015) Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim 119(1):635–642. doi:10.1007/s10973-014-4162-z

    Article  Google Scholar 

  11. Biswas S, Dutta B, Bhattacharya S (2015) Correlation between nucleation, phase transition and dynamic melt-crystallization kinetics in PAni/PVDF blends. RSC Adv 5(91):74486–74498. doi:10.1039/c5ra15989j

    Article  Google Scholar 

  12. Saroj AL, Singh RK, Chandra S (2014) Thermal, vibrational, and dielectric studies on PVP/LiBF4 + ionic liquid [EMIM][BF4]-based polymer electrolyte films. J Phys Chem Solids 75(7):849–857. doi:10.1016/j.jpcs.2014.02.005

    Article  Google Scholar 

  13. Chaurasia SK, Shalu Gupta AK, Verma YL, Singh VK, Tripathi AK, Saroj AL, Singh RK (2015) Role of ionic liquid [BMIMPF6] in modifying the crystallization kinetics behavior of the polymer electrolyte PEO-LiClO4. RSC Adv 5(11):8263–8277. doi:10.1039/c4ra12951b

    Google Scholar 

  14. Shalu Chaurasia SK, Singh RK (2014) Crystallization behaviour of a polymeric membrane based on the polymer PVdF-HFP and the ionic liquid BMIMBF4. RSC Adv 4(92):50914–50924. doi:10.1039/c4ra07085b

    Google Scholar 

  15. Bai Y, Wu G, Zhang Q, Zhang C, Gu J, Sun Y (2015) Effect of the ionic liquid [bmim]PF6 on the nonisothermal crystallization kinetics behavior of poly(ether-b-amide). J Appl Polym Sci 132(25):42137. doi:10.1002/app.42137

    Article  Google Scholar 

  16. Zhu Y, Li C, Na B, Lv R, Chen B, Zhu J (2014) Polar phase formation and competition in the melt crystallization of poly (vinylidene fluoride) containing an ionic liquid. Mater Chem Phys 144(1–2):194–198. doi:10.1016/j.matchemphys.2013.12.042

    Article  Google Scholar 

  17. He L, Sun J, Wang X, Wang C, Song R, Hao Y (2013) Facile and effective promotion of β crystalline phase in poly(vinylidene fluoride) via the incorporation of imidazolium ionic liquids. Polym Int 62(4):638–646. doi:10.1002/pi.4339

    Article  Google Scholar 

  18. Bai Y, Wu G, Zhang Q, Zhang C, Gu J, Sun Y (2015) Effect of the ionic liquid [bmim]PF6 on the nonisothermal crystallization kinetics behavior of poly(ether-b-amide). J Appl Polym Sci 132(25):42137

    Article  Google Scholar 

  19. Yeon S-H, Kim K-S, Choi S, Cha J-H, Lee H (2005) Characterization of PVdF(HFP) gel electrolytes based on 1-(2-hydroxyethyl)-3-methyl imidazolium ionic liquids. J Phys Chem B 109(38):17928–17935. doi:10.1021/jp053237w

    Article  Google Scholar 

  20. Mejri R, Dias JC, Lopes AC, Bebes Hentati S, Silva MM, Botelho G, Mão de Ferro A, Esperança JMSS, Maceiras A, Laza JM, Vilas JL, León LM, Lanceros-Mendez S (2015) Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blends. Eur Polym J 71:304–313. doi:10.1016/j.eurpolymj.2015.07.058

    Article  Google Scholar 

  21. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37(3):568–575. doi:10.1002/pen.11700

    Article  Google Scholar 

  22. Vyazovkin S (2002) Is the kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun 23(13):771–775. doi:10.1002/1521-3927(20020901)23:13<771:aid-marc771>3.0.co;2-g

    Article  Google Scholar 

  23. Hoffman J, Davis GT, Lauritzen J Jr (1976) The rate of crystallization of linear polymers with chain folding. Treatise on solid state chemistry. Springer, Boston, pp 497–614

    Chapter  Google Scholar 

  24. Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman–Lauritzen parameters (U* and K g ) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun 25(6):733–738. doi:10.1002/marc.200300295

    Article  Google Scholar 

  25. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27(18):1515–1532. doi:10.1002/marc.200600404

    Article  Google Scholar 

  26. Sato T, Marukane S, Narutomi T, Akao T (2007) High rate performance of a lithium polymer battery using a novel ionic liquid polymer composite. J Power Sources 164(1):390–396. doi:10.1016/j.jpowsour.2006.10.048

    Article  Google Scholar 

  27. Shalu Singh VK, Singh RK (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 3(28):7305–7318. doi:10.1039/c5tc00940e

    Article  Google Scholar 

  28. Chen X, Zhao J, Zhang J, Qiu L, Xu D, Zhang H, Han X, Sun B, Fu G, Zhang Y, Yan F (2012) Bis-imidazolium based poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J Mater Chem 22(34):18018–18024. doi:10.1039/c2jm33273f

    Article  Google Scholar 

  29. Leones R, Costa CM, Machado AV, Esperança JMSS, Silva MM, Lanceros-Méndez S (2013) Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the [N1 1 1 2(OH)][NTf2] ionic liquid for energy storage applications. Solid State Ionics 253:143–150. doi:10.1016/j.ssi.2013.09.042

    Article  Google Scholar 

  30. Zulfiqar S, Zulfiqar M, Rizvi M, Munir A, McNeill IC (1994) Study of the thermal degradation of polychlorotrifluoroethylene, poly(vinylidene fluoride) and copolymers of chlorotrifluoroethylene and vinylidene fluoride. Polym Degrad Stab 43(3):423–430. doi:10.1016/0141-3910(94)90015-9

    Article  Google Scholar 

  31. Priya L, Jog JP (2002) Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: crystallization and dynamic mechanical behavior studies. J Polym Sci B: Polym Phys 40(15):1682–1689. doi:10.1002/polb.10223

    Article  Google Scholar 

  32. Marega C, Marigo A (2003) Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride). Eur Polym J 39(8):1713–1720. doi:10.1016/S0014-3057(03)00062-4

    Article  Google Scholar 

  33. Freire E, Bianchi O, Martins JN, Monteiro EEC, Forte MMC (2012) Non-isothermal crystallization of PVDF/PMMA blends processed in low and high shear mixers. J Non-Cryst Solids 358(18–19):2674–2681. doi:10.1016/j.jnoncrysol.2012.06.021

    Article  Google Scholar 

  34. Ramesh S, Ling OP (2010) Effect of ethylene carbonate on the ionic conduction in poly(vinylidenefluoride-hexafluoropropylene) based solid polymer electrolytes. Polym Chem 1(5):702–707. doi:10.1039/b9py00244h

    Article  Google Scholar 

  35. Saikia D, Han CC, Chen-Yang YW (2008) Influence of polymer concentration and dyes on photovoltaic performance of dye-sensitized solar cell with P(VdF-HFP)-based gel polymer electrolyte. J Power Sources 185(1):570–576. doi:10.1016/j.jpowsour.2008.06.063

    Article  Google Scholar 

  36. Rajendran S, Mahendran O, Mahalingam T (2002) Thermal and ionic conductivity studies of plasticized PMMA/PVdF blend polymer electrolytes. Eur Polym J 38(1):49–55. doi:10.1016/S0014-3057(01)00140-9

    Article  Google Scholar 

  37. Saikia D, Kumar A (2005) Ionic transport in P(VDF-HFP)–PMMA–LiCF3SO3–(PC + DEC)–SiO2 composite gel polymer electrolyte. Eur Polym J 41(3):563–568. doi:10.1016/j.eurpolymj.2004.10.029

    Article  Google Scholar 

  38. Lanceros-Méndez S, Mano JF, Costa AM, Schmidt VH (2001) FTIR and DSC studies Of mechanically deformed β-PVDF films. J Macromol Sci B 40(3–4):517–527. doi:10.1081/mb-100106174

    Article  Google Scholar 

  39. Ramasundaram S, Yoon S, Kim KJ, Park C (2008) Preferential formation of electroactive crystalline phases in poly(vinylidene fluoride)/organically modified silicate nanocomposites. J Polym Sci B: Polym Phys 46(20):2173–2187. doi:10.1002/polb.21550

    Article  Google Scholar 

  40. H-m Chen, Zhang W-b Du, X-c Yang J-h, Zhang N, Huang T, Wang Y (2013) Crystallization kinetics and melting behaviors of poly(l-lactide)/graphene oxides composites. Thermochim Acta 566:57–70. doi:10.1016/j.tca.2013.05.018

    Article  Google Scholar 

  41. Lopes AC, Ferreira JCC, Costa CM, Lanceros-Méndez S (2013) Crystallization kinetics of montmorillonite/poly(vinylidene fluoride) composites and its correlation with the crystalline polymer phase formation. Thermochim Acta 574:19–25. doi:10.1016/j.tca.2013.08.003

    Article  Google Scholar 

  42. Lopes AC, Carabineiro SAC, Pereira MFR, Botelho G, Lanceros-Mendez S (2013) Nanoparticle size and concentration dependence of the electroactive phase content and electrical and optical properties of Ag/poly(vinylidene fluoride) composites. ChemPhysChem 14(9):1926–1933. doi:10.1002/cphc.201300174

    Article  Google Scholar 

  43. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12(3):150–158. doi:10.1016/0032-3861(71)90041-3

    Article  Google Scholar 

  44. Avrami M (1940) Kinetics of phase change. ii transformation–time relations for random distribution of nuclei. J Chem Phys 8(2):212–224. doi:10.1063/1.1750631

    Article  Google Scholar 

  45. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C: Polym Symp 6(1):183–195. doi:10.1002/polc.5070060121

    Article  Google Scholar 

  46. Toda A, Oda T, Hikosaka M, Saruyama Y (1997) A new method of analysing transformation kinetics with temperature modulated differential scanning calorimetry: application to polymer crystal growth. Polymer 38(1):231–233. doi:10.1016/S0032-3861(96)00627-1

    Article  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge the DST-FIST scheme of the Department of Physics, University of Kalyani, for providing the instrumental facilities. BD sincerely acknowledges SERB-DST for the financial support under the scheme SB/FT/CS-53/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhratanu Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Dutta, B. & Bhattacharya, S. Electroactive phase nucleation and non-isothermal crystallization kinetics study in [DEMM][TFSI] ionic liquid incorporated P(VDF-HFP) co-polymer membranes. J Mater Sci 51, 7814–7830 (2016). https://doi.org/10.1007/s10853-016-9978-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9978-4

Keywords

Navigation