Skip to main content
Log in

Design and fabrication of Gd2Zr2O7-based waste forms for U3O8 immobilization in high capacity

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For the long-term radiotoxicity of uranium in nuclear waste, U3O8 were immobilized into Gd2Zr2O7 by ceramics solidification technology. Systematic samples (Gd1−4x U2x )2(Zr1−x U x )2O7 (0 ≤ x ≤ 0.25) were designed and prepared simultaneously via lattice substitution. The immobilization effects were identified by XRD, BSE, EDS, SEM, TEM, and XPS. The results show that 38.83 wt% U3O8 gets dissolved in Gd2Zr2O7 as a single phase (corresponding to 0 ≤ x ≤ 0.14 in (Gd1−4x U2x )2(Zr1−x U x )2O7), with U6+ occupies 56 at.% of the Gd3+ positions and U4+ occupies 14 at.% of the Zr4+ sites. The XRD patterns indicate that the solid solutions transform from pyrochlore to defective fluorite structure with enhanced uranium, and this is due to the difference in ionic radii between dopant ions (U6+ and U4+) and the host ions (Gd3+ and Zr4+). Grain coarsening and densification are observed with the increased uranium. Tetravalent and hexavalent uranium in waste forms are confirmed through XPS. This research reveals the good adaptability of Gd2Zr2O7 in immobilizing U3O8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Donald IW, Metcalfe BL, Taylor RNJ (1997) The immobilization of high level radioactive wastes using ceramics and glasses. J Mater Sci 22:5851–5887. doi:10.1023/A:1018646507438

    Article  Google Scholar 

  2. Chourasia R, Bohre A, Ambastha RD et al (2010) Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium. J Mater Sci 45:533–545. doi:10.1007/s10853-009-3971-0

    Article  Google Scholar 

  3. Banerjee C, Dudwadkar N, Tripathi SC et al (2014) Nano-cerium vanadate: a novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste. J Hazard Mater 280:63–70

    Article  Google Scholar 

  4. Zhang KB, Wen GJ, Zhang HB et al (2015) Self-propagating high-temperature synthesis of CeO2 incorporated zirconolite-rich waste forms and the aqueous durability. J Eur Ceram Soc 35:3085–3093

    Article  Google Scholar 

  5. Wang C, Wang Y, Zhang A et al (2013) The influence of ionic radii on the grain growth and sintering-resistance of Ln2Ce2O7 (Ln = La, Nd, Sm, Gd). J Mater Sci 48:8133–8139. doi:10.1007/s10853-013-7625-x

    Article  Google Scholar 

  6. Maik L, Zhang FX, Zhang JM et al (2010) Review of A2B2O7 pyrochlore response to irradiation and pressure. Nucl Instrum Methods Phys Res Sect B 268:2951–2959. doi:10.1016/j.nimb.2010.05.016

    Article  Google Scholar 

  7. Zhang FX, Lang M, Tracy C et al (2014) Incorporation of uranium in pyrochlore oxides and pressure-induced phase transitions. J Solid State Chem 219:49–54

    Article  Google Scholar 

  8. Poulsen FW, Glerup M, Holtappels P (2000) Structure, Raman spectra and defect chemistry modelling of conductive pyrochlore oxides. Solid State Ionics 135:595–602

    Article  Google Scholar 

  9. Garbout A, Bouattour S, Kolsi AW (2009) Sol-gel synthesis, structure characterization and Raman spectroscopy of Gd2−2xBi2xTi2O7 solid solutions. J Alloys Compd 469:229–236

    Article  Google Scholar 

  10. Kong L, Karatchevtseva I, Gregg DJ et al (2013) Gd2Zr2O7 and Nd2Zr2O7 pyrochlore prepared by aqueous chemical synthesis. J Eur Ceram Soc 33:3273–3285

    Article  Google Scholar 

  11. Gregg DJ, Zhang YJ, Zhang ZM et al (2013) Crystal chemistry and structures of uranium-doped gadolinium zirconates. J Nucl Mater 438:144–153

    Article  Google Scholar 

  12. Mandal BP, Garg N, Sharma SM et al (2009) Solubility of ThO2 in Gd2Zr2O7 pyrochlore: XRD, SEM and Raman spectroscopic studies. J Nucl Mater 392:95–99

    Article  Google Scholar 

  13. Kutty KVG, Asuvathraman R, Madhavan RR et al (2005) Actinide immobilization in crystalline matrix: a study of uranium incorporation in gadolinium zirconate. J Phys Chem Solids 66:596–601

    Article  Google Scholar 

  14. Su SJ, Ding Y, Shu XY et al (2015) Nd and Ce simultaneous substitution driven structure modifications in Gd2−xNdxZr2−yCeyO7. J Eur Ceram Soc 35:1847–1853

    Article  Google Scholar 

  15. Liu ZG, Ouyang JH, Zhou Y et al (2009) Effect of Ti substitution for Zr on the thermal expansion property of fluorite-type Gd2Zr2O7. Mater Design 30:3784–3788

    Article  Google Scholar 

  16. Lu XR, Fan L, Shu XY et al (2015) Phase evolution and chemical durability of co-doped Gd2Zr2O7 ceramics for nuclear waste forms. Ceram Int 41:6344–6349

    Article  Google Scholar 

  17. Jafar M, Phapale SB, Mandal BP et al (2015) Preparation and structure of uranium-incorporated Gd2Zr2O7 compounds and their thermodynamic stabilities under oxidizing and reducing conditions. Inorg Chem 54:9447–9457

    Article  Google Scholar 

  18. Kumari R, Kulriya PK, Grover V et al (2016) Radiation stability of Gd2Zr2O7: effect of stoichiometry and structure. Ceram Int 42:103–109

    Article  Google Scholar 

  19. Allen GC, Tempest PA (1986) Ordered defects in the oxides of uranium. Proc R Soc Lond A Math Phys Sci 1831:325–344

    Article  Google Scholar 

  20. Pan ZL (1993) Crystallography and mineralogy. Geological Press, Beijing, p 153

    Google Scholar 

  21. Díaz-Guillén JA, Fuentes AF, Díaz-Guillén MR et al (2009) The effect of homovalent A-site substitutions on the ionic conductivity of pyrochlore-type Gd2Zr2O7. J Power Sources 186:349–352

    Article  Google Scholar 

  22. Ilton ES, Bagus PS (2008) Ligand field effects on the multiplet structure of the U4f XPS of UO2. Surf Sci 602:1114–1121

    Article  Google Scholar 

  23. Boily JF, Ilton ES (2008) An independent confirmation of the correlation of Uf4 primary peaks and satellite structures of UVI, UV and UIV in mixed valence uranium oxides by two-dimensional correlation spectroscopy, Surf Sci 602:3637–3646

    Article  Google Scholar 

  24. Veal BW, Lam DJ (1982) Gmelin handbook of inorganic chemistry. In: Keller (ed) vol 45. Springer, Berlin, pp 176–210

  25. Bera S, Sali SK, Sampath S et al (1998) Oxidation state of uranium: an XPS study of alkali and alkaline earth uranates. J Nucl Mater 255:26–33

    Article  Google Scholar 

  26. Asuvathraman R, Gnanasekar KI, Clinsha PC et al (2014) Investigations on the charge compensation on Ca and U substitution in CePO4 by using XPS, XRD and Raman spectroscopy. Ceram Int 41:3731–3739

    Article  Google Scholar 

  27. Kumar KS, Mathews T, Nawada HP et al (2004) Oxidation behaviour of uranium in the internally gelated urania-ceria solid solutions-XRD and XPS studies. J Nucl Mater 324:177–182

    Article  Google Scholar 

  28. Pireaux JJ, Riga J, Thibaut E et al (1977) Shake-up satellites in the x-ray photoelectron spectra of uranium oxides and fluorides: a band structure scheme for uranium dioxide, UO2. Chem Phys 22:113–120

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank financial supports from the National Natural Science Foundation of China (Nos. 41302028, 21507105), China Postdoctoral Science Foundation Funded Project (No. 2014M552384), Key Project of Sichuan Education Department (Nos. 14ZA0099, 15ZB0116), Foundation of Laboratory of National Defense Key Discipline for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology (No. 15yyhk10), and the Doctor Foundation in Southwest University of Science and Technology (No. 14zx7168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xirui Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, X., Lu, X., Fan, L. et al. Design and fabrication of Gd2Zr2O7-based waste forms for U3O8 immobilization in high capacity. J Mater Sci 51, 5281–5289 (2016). https://doi.org/10.1007/s10853-016-9831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9831-9

Keywords

Navigation