Skip to main content
Log in

Synthesis of monodisperse poly(styrene-co-divinylbenzene) microspheres with binary porous structures and application in high-performance liquid chromatography

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Monodisperse poly(styrene-co-divinylbenzene) (PS-DVB) microspheres with binary porous structures were synthesized using a modified seeded polymerization method. The microspheres had small pores on the surface and big pores in the middle. Using the binary porous PS-DVB (BPPSD) microspheres as packing materials for high-performance liquid chromatography, several benzene analogs were effectively separated in a column as short as 75 mm due to the high surface areas of the stationary phase. Because of the π–π affinity interaction between BPPSD particles and analytes, the separation performance of the BPPSD column was better than commercialized C18 column at the same conditions. Compared to column filled with non-porous PS-DVB particles, the back pressure of BPPSD column could be maintained at especially low level even at high flow rates due to the excellent permeability of the fillers. In addition, approximate baseline separation of C60 and C70 was also achieved in the 75 mm BPPSD column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Guyot A, Bartholin M (1982) Design and properties of polymers as materials for fine chemistry. Prog Polym Sci 8(3):277–331

    Article  Google Scholar 

  2. Munirasu S, Nunes SP (2014) Porous asymmetric SiO2-g-PMMA nanoparticles produced by phase inversion. J Mater Sci 49(21):7399–7407. doi:10.1007/s10853-014-8434-6

    Article  Google Scholar 

  3. Huck CW, Bonn GK (2005) Poly (styrene-divinylbenzene) based media for liquid chromatography. Chem Eng Technol 28(12):1457–1472

    Article  Google Scholar 

  4. Malik MA, Ali SW, Waseem S (2006) A simple method for estimating parameters representing macroporosity of porous styrene–divinylbenzene copolymers. J Appl Polym Sci 99(6):3565–3570

    Article  Google Scholar 

  5. Fan JB, Huang C, Jiang L, Wang S (2013) Nanoporous microspheres: from controllable synthesis to healthcare applications. J Mater Chem B 1(17):2222–2235

    Article  Google Scholar 

  6. Albuszis M, Roth PJ, Pauer W, Moritz HU (2014) Macroporous uniform azide-and alkyne-functional polymer microspheres with tuneable surface area: synthesis, in-depth characterization and click-modification. Polym Chem 5(19):5689–5699

    Article  Google Scholar 

  7. Zakiyan SE, Famili MHN, Ako M (2014) Controlling foam morphology of polystyrene via surface chemistry, size and concentration of nanosilica particles. J Mater Sci 49(18):6225–6239

    Article  Google Scholar 

  8. Chen S, Gao F, Wang Q, Su Z, Ma G (2012) Double emulsion-templated microspheres with flow-through pores at micrometer scale. Colloid Polym Sci 291(1):117–126

    Article  Google Scholar 

  9. Li J, Wang S, Liu H, Wang S, You L (2011) Preparation and characterization of polystyrene/polycarbonate composite hollow microspheres by microencapsulation method. J Mater Sci 46(10):3604–3610. doi:10.1007/s10853-011-5276-3

    Article  Google Scholar 

  10. Ugelstad J (1978) Swelling capacity of aqueous dispersions of oligomer and polymer substances and mixtures thereof. Makromol Chem 179(3):815–817

    Article  Google Scholar 

  11. Ugelstad J, Kaggerud KH, Hansen FK, Berge A (1979) Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles, 2. A two step swelling process of polymer particles giving an enormous increase in absorption capacity. Makromol Chem 180(3):737–744

    Article  Google Scholar 

  12. Cheng CM, Micale FJ, Vanderhoff JW, El-Aasser JW (1992) Synthesis and characterization of monodisperse porous polymer particles. J Polym Sci Pol Chem 30(2):235–244

    Article  Google Scholar 

  13. Li WH, Stöver HDH (2000) Monodisperse cross-linked core-shell polymer microspheres by precipitation polymerization. Macromolecules 33(12):4354–4360

    Article  Google Scholar 

  14. Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Ed Engl 34(17):1812–1832

    Article  Google Scholar 

  15. Raj WRP, Sasthav M, Cheung HM (1995) Polymerization of single-phase microemulsions: dependence of polymer morphology on microemulsion structure. Polymer 36(13):2637–2646

    Article  Google Scholar 

  16. Omi S, Katami K, Yamamoto A, Iso M (1994) Synthesis of polymeric microspheres employing SPG emulsification technique. J Appl Polym Sci 51(1):1–11

    Article  Google Scholar 

  17. Omi S (1996) Preparation of monodisperse microspheres using the Shirasu porous glass emulsification technique. Colloid Surf A 109:97–107

    Article  Google Scholar 

  18. Sayil C, Okay O (2001) Macroporous poly (N-isopropyl) acrylamide networks: formation conditions. Polymer 42(18):7639–7652

    Article  Google Scholar 

  19. Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25(6):711–779

    Article  Google Scholar 

  20. Okay O (1999) Formation of macroporous styrene-divinylbenzene copolymer networks: theory vs. experiments. J Appl Polym Sci 74(9):2181–2195

    Article  Google Scholar 

  21. Senel S, Camli ST, Tuncel M, Tuncel A (2002) Nucleotide adsorption–desorption behaviour of boronic acid functionalized uniform-porous particles. J Chromatogr B 769(2):283–295

    Article  Google Scholar 

  22. Camli T, Tuncel M, Şenel S, Tuncel A (2002) Functional, uniform, and macroporous latex particles: preparation, electron microscopic characterization, and nonspecific protein adsorption properties. J Appl Polym Sci 84(2):414–429

    Article  Google Scholar 

  23. Wang QC, Švec F, Frechet JMJ (1994) Fine control of the porous structure and chromatographic properties of monodisperse macroporous poly (styrene-co-divinylbenzene) beads prepared using polymer porogens. J Polym Sci Pol Chem 32(13):2577–2588

    Article  Google Scholar 

  24. Lungfiel K, Seubert A (2014) Varying the porous structure of polystyrene/divinylbenzene beads prepared by Ugelstads activated swelling technique and examining its reversed phase HPLC properties. J Chromatogr A 1358:117–127

    Article  Google Scholar 

  25. Svec F, Fréchet JM (1996) New designs of macroporous polymers and supports: from separation to biocatalysis. Science 273(5272):205–211

    Article  Google Scholar 

  26. Zhang J, Gan N, Chen S, Pan M, Wu D, Cao Y (2015) β-cyclodextrin functionalized meso-/macroporous magnetic titanium dioxide adsorbent as extraction material combined with gas chromatography-mass spectrometry for the detection of chlorobenzenes in soil samples. J Chromatogr A 1401:24–32

    Article  Google Scholar 

  27. Vaast A, Terryn H, Svec F, Eeltink S (2014) Nanostructured porous polymer monolithic columns for capillary liquid chromatography of peptides. J Chromatogr A 1374:171–179

    Article  Google Scholar 

  28. Tuncel A, Tuncel M, Salih B (1999) Electron microscopic observation of uniform macroporous particles. I. Effect of seed latex type and diluent. J Appl Polym Sci 71(14):2271–2290

    Article  Google Scholar 

  29. Unsal E, Camli ST, Senel S, Tuncel A (2004) Chromatographic performance of monodisperse–macroporous particles produced by “modified seeded polymerization.” I: effect of monomer/seed latex ratio. J Appl Polym Sci 92(1):607–618

    Article  Google Scholar 

  30. Ellingsen T, Aune O, Ugelstad J, Hagen S (1990) Monosized stationary phases for chromatography. J Chromatogr A 535:147–161

    Article  Google Scholar 

  31. Liang YC, Svec F, Fréchet JMJ (1995) Monodisperse polymer beads as packing material for high-performance liquid chromatography. Preparation of macroporous poly (2, 3-epoxypropyl vinylbenzyl ether-co-divinylbenzene) beads, their properties, and application to HPLC separations. J Polym Sci Pol Chem 33(15):2639–2646

    Article  Google Scholar 

  32. Petro M, Svec F, Fréchet JMJ (1997) Monodisperse hydrolyzed poly (glycidyl methacrylate-co-ethylene dimethacrylate) beads as a stationary phase for normal-phase HPLC. Anal Chem 69(16):3131–3139

    Article  Google Scholar 

  33. Unsal E, Elmas B, Camlı ST, Tuncel M, Senel S, Tuncel A (2005) Monodisperse-porous poly (styrene-co-divinylbenzene) beads providing high column efficiency in reversed phase HPLC. J Appl Polym Sci 95(6):1430–1438

    Article  Google Scholar 

  34. Cong HL, Yu B, Akasaka T, Lu X (2013) Endohedral metallofullerenes: an unconventional core–shell coordination union. Coord Chem Rev 257(21):2880–2898

    Article  Google Scholar 

  35. Yu B, Yuan H, Wang D, Cong HL, Xu XD, Yang SJ (2014) Fabrication of anisotropic silica hollow microspheres using polymeric protrusion particles as templates. Colloid Polym Sci 292(9):2361–2367

    Article  Google Scholar 

  36. Wang D, Yu B, Cong HL, Wang YZ, Wu Q, Wang JL (2013) Synthesis of monodisperse polystyrene microspheres by seeding polymerization. Integr Ferroelectr 147(1):41–46

    Article  Google Scholar 

  37. Sing KS, Everett DH, Haul RA, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  38. Qu JB, Zhou WQ, Wei W, Su ZG, Ma GH (2008) An effective way to hydrophilize gigaporous polystyrene microspheres as rapid chromatographic separation media for proteins. Langmuir 24(23):13646–13652

    Article  Google Scholar 

  39. Qu JB, Wan XZ, Zhai YQ, Zhou WQ, Su ZG, Ma GH (2009) A novel stationary phase derivatized from hydrophilic gigaporous polystyrene-based microspheres for high-speed protein chromatography. J Chromatogr A 1216(37):6511–6516

    Article  Google Scholar 

  40. de la Vega MR, Chenou C, Loureiro JM, Rodrigues AE (1998) Mass transfer mechanisms in Hyper D media for chromatographic protein separation. Biochem Eng J 1(1):11–23

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of China (21375069, 21404065, 21574072), the Natural Science Foundation for Distinguished Young Scientists of Shandong Province (JQ201403), the Project of Shandong Province Higher Educational Science and Technology Program (J15LC20), the Graduate Education Innovation Project of Shandong Province (SDYY14028), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry (20111568), the Science and Technology Program of Qingdao (1314159jch), and the Postdoctoral Scientific Research Foundation of Qingdao.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Yu or Hailin Cong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Tian, C., Cong, H. et al. Synthesis of monodisperse poly(styrene-co-divinylbenzene) microspheres with binary porous structures and application in high-performance liquid chromatography. J Mater Sci 51, 5240–5251 (2016). https://doi.org/10.1007/s10853-016-9826-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9826-6

Keywords

Navigation