Skip to main content
Log in

Identification of α-Al2O3 surface sites and their role in the adsorption of stearic acid

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

ABSTRACT

The adsorption isotherm of stearic acid (SA) on α-Al2O3 previously subjected to dialysis by ion exchange was determined with the aid of LC–MS analysis of the supernatant. The first monolayer saturation occurred at 0.8 %wt of SA and a second monolayer started above 1.6 %wt of SA. The interaction mechanism between α-Al2O3 and SA was investigated by DRIFTS analysis of the coated powder. The surface hydroxyls primarily involved in SA adsorption occupy doubly and triply coordinated sites on the α-Al2O3 surface, as evidenced by the inverse infrared bands at 3750 and 3695 cm−1. The interaction between α-Al2O3 and SA gives rise to bands at 1566 (νasCOO) and 1468 cm−1sCOO), as well as bands at 1415 (ν+δCOH) and 1320 cm−1 (OH···H). It is proposed that adsorption of stearic acid on α-alumina occurs predominantly through electrostatic interactions and hydrogen bonding, without exchange reaction and direct complexation with surface Al cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Sigmund W, Pyrgiotakis G, Daga A (2005) Theory and applications of colloidal processing. In: Lee BI, Komarneni S (eds) Chemical processing of ceramics. CRC Press, Boca Raton

    Google Scholar 

  2. Holmberg K (2002) Handbook of applied colloid and surface chemistry. Wiley, New York

    Google Scholar 

  3. Lewis JA (2004) Colloidal processing of ceramics. J Am Ceram Soc 83:2341–2359

    Article  Google Scholar 

  4. Reed JS (1995) Principles of ceramics processing, 2nd edn. Wiley, New York

    Google Scholar 

  5. Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, Hoboken

    Book  Google Scholar 

  6. Novak S, Vidovič K, Sajko M, Kosmač T (1997) Surface modification of alumina powder for LPIM. J Eur Ceram Soc 17:217–223

    Article  Google Scholar 

  7. Tseng WJ (2000) Influence of surfactant on rheological behaviors of injection-molded alumina suspensions. Mater Sci Eng, A 289:116–122

    Article  Google Scholar 

  8. Liu DM (1999) Effect of dispersant on the flow energy of ceramic injection molding mixtures. Mater Sci Eng A 259:141–144

    Article  Google Scholar 

  9. Novak S, Olhero SMH, Ferreira JMF, Zupančič A (2004) Rheological properties of paraffin suspensions of surface-modified alumina powder for low-pressure injection moulding. Rheol Acta 43:559–566

    Article  Google Scholar 

  10. Lin ST, German RM (1994) Interaction between binder and powder in injection moulding of alumina. J Mater Sci 29:5207–5212. doi:10.1007/BF01151118

    Article  Google Scholar 

  11. Zorzi JE, Perottoni CA, da Jornada JAH (2004) Moldagem por injeção em baixa pressão de peças complexas de cerâmicas avançadas produzidas com pós submicrométricos. Cerâmica 50:202–208

    Article  Google Scholar 

  12. Chan T-Y, Lin S-T (1995) Effects of stearic acid on the injection molding of alumina. J Am Ceram Soc 78:2746–2752

    Article  Google Scholar 

  13. Carter CB, Norton MG (2013) Ceramic materials: science and engineering. Springer, New York

    Book  Google Scholar 

  14. de Oliveira IR, Studart AR, Pileggi RG, Pandolfelli VC (2000) Dispersão e Empacotamento de Partículas: Princípios e Aplicações em Processamento Cerâmico. Fazendo Arte, São Paulo

    Google Scholar 

  15. Franks GV, Gan Y (2007) Charging behavior at the alumina–water interface and implications for ceramic processing. J Am Ceram Soc 90:3373–3388

    Article  Google Scholar 

  16. Mutsuddy BC, Ford RG (1995) Ceramic injection molding. Chapman & Hall, London

    Google Scholar 

  17. Knözinger H, Ratnasamy P (1978) Catalytic aluminas: surface models and characterization of surface sites. Catal Rev 17:31–70

    Article  Google Scholar 

  18. El-Nadjar W, Bonne M, Trela E et al (2012) Infrared investigation on surface properties of alumina obtained using recent templating routes. Microporous Mesoporous Mater 158:88–98

    Article  Google Scholar 

  19. Łodziana Z, Nørskov JK, Stoltze P (2003) The stability of the hydroxylated (0001) surface of α-Al2O3. J Chem Phys 118:11179–11188

    Article  Google Scholar 

  20. Levin I, Brandon D (2005) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81:1995–2012

    Article  Google Scholar 

  21. Trainor TP, Eng PJ, Brown GE et al (2002) Crystal truncation rod diffraction study of the α-Al2O3 (102) surface. Surf Sci 496:238–250

    Article  Google Scholar 

  22. Ahn J, Rabalais JW (1997) Composition and structure of The Al2O3{0001}-(1 × 1) surface. Surf Sci 388:121–131

    Article  Google Scholar 

  23. Morterra C, Magnacca G (1996) A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal Today 27:497–532

    Article  Google Scholar 

  24. Juhl KMS, Bovet N, Hassenkam T et al (2014) Change in organic molecule adhesion on α-alumina (sapphire) with change in NaCl and CaCl2 solution salinity. Langmuir 30:8741–8750

    Article  Google Scholar 

  25. Huang P, Pham TA, Galli G, Schwegler E (2014) Alumina(0001)/water interface: structural properties and infrared spectra from first-principles molecular dynamics simulations. J Phys Chem C 118:8944–8951

    Article  Google Scholar 

  26. Catalano JG, Park C, Zhang Z, Fenter P (2006) Termination and water adsorption at the α-Al2O3 (012)-aqueous solution interface. Langmuir 22:4473–4668

    Article  Google Scholar 

  27. Hiemstra T, Yong H, Van Riemsdijk WH (1999) Interfacial charging phenomena of aluminum (Hydr)oxides. Langmuir 15:5942–5955

    Article  Google Scholar 

  28. Ballinger TH, Yates JT (1991) IR spectroscopic detection of Lewis acid sites on alumina using adsorbed carbon monoxide. Correlation with aluminum-hydroxyl group removal. Langmuir 7:3041–3045

    Article  Google Scholar 

  29. Zhang L, Tian C, Waychunas GA, Shen YR (2008) Structures and charging of α-alumina (0001)/water Interfaces studied by sum-frequency vibrational spectroscopy. J Am Chem Soc 130:7686–7694

    Article  Google Scholar 

  30. Brown GE, Henrich VE, Casey WH et al (1999) Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem Rev 99:77–174

    Article  Google Scholar 

  31. Rosenqvist J, Persson P, Sjöberg S (2002) Protonation and charging of nanosized gibbsite (α-Al(OH)3) particles in aqueous suspension. Langmuir 18:4598–4604

    Article  Google Scholar 

  32. Hass KC (1998) The chemistry of water on alumina surfaces: reaction dynamics from first principles. Science 282:265–268

    Article  Google Scholar 

  33. Kasprzyk-Hordern B (2004) Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Adv Colloid Interface Sci 110:19–48

    Article  Google Scholar 

  34. Hidber PC, Graule TJ, Gauckler LJ (1997) Influence of the dispersant structure on properties of electrostatically stabilized aqueous alumina suspensions. J Eur Ceram Soc 17:239–249

    Article  Google Scholar 

  35. Contescu C, Jagiello J, Schwarz JA (1993) Heterogeneity of proton binding sites at the oxide/solution interface. Langmuir 9:1754–1765

    Article  Google Scholar 

  36. Johnson SB, Yoon TH, Slowey AJ, Brown GE (2004) Adsorption of organic matter at mineral/water interfaces: 3. implications of surface dissolution for adsorption of oxalate. Langmuir 20:11480–11492

    Article  Google Scholar 

  37. Mawhinney DB, Rossin JA, Gerhart K, Yates JT (1999) Adsorption and reaction of 2-chloroethylethyl sulfide with Al2O3 surfaces. Langmuir 15:4789–4795

    Article  Google Scholar 

  38. Shirai T, Li JW, Matsumaru K et al (2005) Surface hydration states of commercial high purity α-Al2O3 powders evaluated by temperature programmed desorption mass spectrometry and diffuse reflectance infrared fourier transform spectroscopy. Sci Technol Adv Mater 6:123–128

    Article  Google Scholar 

  39. Hass KC, Schneider WF, Curioni A, Andreoni W (2000) First-principles molecular dynamics simulations of H2O on α-Al2O3 (0001). J Phys Chem B 104:5527–5540

    Article  Google Scholar 

  40. Yoon TH, Johnson SB, Brown GE (2005) Adsorption of organic matter at mineral/water interfaces. IV. Adsorption of humic substances at boehmite/water interfaces and impact on boehmite dissolution. Langmuir 21:5002–5012

    Article  Google Scholar 

  41. Ha J, Hyun Yoon T, Wang Y et al (2008) Adsorption of organic matter at mineral/water interfaces: 7. ATR-FTIR and quantum chemical study of lactate interactions with hematite nanoparticles. Langmuir 24:6683–6692

    Article  Google Scholar 

  42. Yoon TH, Johnson SB, Musgrave CB, Brown GE (2004) Adsorption of organic matter at mineral/water interfaces: I. ATR-FTIR spectroscopic and quantum chemical study of oxalate adsorbed at boehmite/water and corundum/water interfaces. Geochim Cosmochim Acta 68:4505–4518

    Article  Google Scholar 

  43. Johnson SB, Yoon TH, Brown GE (2005) Adsorption of organic matter at mineral/water interfaces: 5. Effects of adsorbed natural organic matter analogues on mineral dissolution. Langmuir 21:2811–2821

    Article  Google Scholar 

  44. Catalano JG, Park C, Fenter P, Zhang Z (2008) Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite. Geochim Cosmochim Acta 72:1986–2004

    Article  Google Scholar 

  45. Tong SR, Wu LY, Ge MF et al (2010) Heterogeneous chemistry of monocarboxylic acids on α-Al2O3 at different relative humidities. Atmos Chem Phys 10:7561–7574

    Article  Google Scholar 

  46. Rubasinghege G, Ogden S, Baltrusaitis J, Grassian VH (2013) Heterogeneous uptake and adsorption of gas-phase formic acid on oxide and clay particle surfaces: the roles of surface hydroxyl groups and adsorbed water in formic acid adsorption and the impact of formic acid adsorption on water uptake. J Phys Chem A 117:11316–11327

    Article  Google Scholar 

  47. Bowers A, Huang C (1985) Adsorption characteristics of polyacetic amino acids onto hydrous γ-Al2O3. J Colloid Interface Sci 105:197–215

    Article  Google Scholar 

  48. Das MR, Mahiuddin S (2005) Kinetics and adsorption behaviour of benzoate and phthalate at the α-alumina–water interface: influence of functionality. Colloids Surf A 264:90–100

    Article  Google Scholar 

  49. Liascukiene I, Aissaoui N, Asadauskas SJ et al (2012) Ordered nanostructures on a hydroxylated aluminum surface through the self-assembly of fatty acids. Langmuir 28:5116–5124

    Article  Google Scholar 

  50. Öberg K, Persson P, Shchukarev A, Eliasson B (2001) Comparison of monolayer films of stearic acid and methyl stearate on an Al2O3 Surface. Thin Solid Films 397:102–108

    Article  Google Scholar 

  51. Lim MS, Feng K, Chen X et al (2007) Adsorption and desorption of stearic acid self-assembled monolayers on aluminum oxide. Langmuir 23:2444–2452

    Article  Google Scholar 

  52. Hasegawa M, Low MJ (1969) Infrared study of adsorption in situ at the liquid-solid interface. J Colloid Interface Sci 30:378–386

    Article  Google Scholar 

  53. Kipling JJ, Wright EHM (1964) The adsorption of stearic acid from solution by oxide adsorbents. J Chem Soc 3535–3540

  54. Richard E, Aruna ST, Basu BJ (2012) Superhydrophobic surfaces fabricated by surface modification of alumina particles. Appl Surf Sci 258:10199–10204

    Article  Google Scholar 

  55. Cruz RCD, Reinshagen J, Oberacker R et al (2005) Electrical conductivity and stability of concentrated aqueous alumina suspensions. J Colloid Interface Sci 286:579–588

    Article  Google Scholar 

  56. Raharjo P, Ishizaki C, Ishizaki K (2000) Surface hydration states of high purity α-Al2O3 powders. J Ceram Soc Japan 108:449–455

    Article  Google Scholar 

  57. Socrates G (2001) Infrared and raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, New York

    Google Scholar 

  58. Nakamoto K (1997) Infrared and raman spectra of inorganic and coordination compounds, 5th edn. Wiley, New York

    Google Scholar 

  59. Silverstein RM, Webster FX, Kiemle DJ (1991) Spectrometric identification of organic compounds, 7th edn. Wiley, New York

    Google Scholar 

  60. Gooβen LJ, Rodríguez N, Gooβen K (2008) Carboxylic acids as substrates in homogeneous catalysis. Angew Chemie Int Ed 47:3100–3120

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Secretaria de Desenvolvimento Econômico, Ciência e Tecnologia do Estado do Rio Grande do Sul (SDECT/RS), INES (Instituto Nacional de Engenharia de Superfícies), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). Thanks are due also to Fabiana Agostini (Instituto de Biotecnologia, Universidade de Caxias do Sul) for her assistance with liquid chromatography analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Webber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webber, J., Zorzi, J.E., Perottoni, C.A. et al. Identification of α-Al2O3 surface sites and their role in the adsorption of stearic acid. J Mater Sci 51, 5170–5184 (2016). https://doi.org/10.1007/s10853-016-9819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9819-5

Keywords

Navigation