Skip to main content
Log in

Crystallographic orientation relationships and interfaces in laser-processed directionally solidified WC–W2C eutectoid ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Crystallographic orientation relationships and interfaces in directionally solidified WC–W2C eutectoids are investigated by electron microscopy and electron back-scattered diffraction. The WC–W2C eutectoids are prepared by a laser surface processing method, which unidirectionally melts and resolidifies ceramic powder substrates. Lamellar-type microstructures are observed in all samples with preferred nominal growth directions of [\( \overline{1} 2\overline{1} 0 \)]WC//[\( \overline{1} 2\overline{1} 0 \)]W2C along the solidification direction. The majority of interface habit planes are found to be (0001)WC//(0001)W2C. The interfaces are found to be semicoherent, with a misfit Burger’s vector of 1/3[\( 2{\bar{1}} {\bar{1}} 0 \)]. An intermediate layer is identified at the interface and is associated with a change in the stacking sequence of the close-packed (0001) tungsten planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Llorca J, Orera V (2006) Directionally solidified eutectic ceramic oxides. Prog Mater Sci 51:711–809

    Article  Google Scholar 

  2. Stubican VS, Bradt RC (1980) Directional solidification of nonoxide eutectics. US Army Research Office Report

  3. Pastor JY, Poza P, Llorca J, Peña JI (2001) Mechanical properties of directionally solidified Al2O3-ZrO2(Y2O3) eutectics. Mater Sci Eng A 308:241–249

    Article  Google Scholar 

  4. Larrea A, Orera VM, Merino RI, Peña JI (2005) Microstructure and mechanical properties of Al2O3–YSZ and Al2O3–YAG directionally solidified eutectic plates. J Eur Ceram Soc 25:1419–1429

    Article  Google Scholar 

  5. Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y (1998) High-temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite. J Mater Sci 33:1217–1225. doi:10.1023/A:1004377626345

    Article  Google Scholar 

  6. Bogomol I, Nishimura T, Vasylkiv O et al (2009) Microstructure and high-temperature strength of B4C-TiB2 composite prepared by a crucibleless zone melting method. J Alloys Compd 485:677–681

    Article  Google Scholar 

  7. White RM, Kunkle JM, Polotai AV, Dickey EC (2011) Microstructure and hardness scaling in laser-processed B4C–TiB2 eutectic ceramics. J Eur Ceram Soc 31:1227–1232

    Article  Google Scholar 

  8. Gunjishima I, Akashi T, Goto T (2002) Characterization of directionally solidified B4C-TiB2 composites prepared by a floating zone method. Mater Trans 43:712–720

    Article  Google Scholar 

  9. Li W, Tu R, Goto T (2005) Preparation of TiB2-SiC eutectic composite by an arc-melted method and its characterization. Mater Trans 46:2504–2508

    Article  Google Scholar 

  10. Ordanyan SS, Dmitriev AI, Stepanenko EK et al (1987) SiC-TiB2 system—A base of high-hardness wear-resistant materials. Sov Powder Metall Met Ceram 26:375–377

    Google Scholar 

  11. Ashbrook RL (1977) Directionally solidified ceramic eutectics. J Am Ceram Soc 60:428–435

    Article  Google Scholar 

  12. Jackson KA, Hunt JD (1966) Lamellar and rod eutectic growth. Trans Metall Soc Aime 236:1129–1142

    Google Scholar 

  13. Sorrell CC, Beratan HR, Bradt RC, Stubican VS (1984) Directional solification of (Ti, Zr) carbides-(Ti, Zr) diboride eutectics. J Am Ceram Soc 67:190–194

    Article  Google Scholar 

  14. Deng H, Dickey EC, Lewis N, Road B (2004) Crystallographic characterization and indentation mechanical properties of LaB6-ZrB2 directionally solidified eutectics. J Mater Sci 39:5987–5994. doi:10.1023/B:JMSC.0000041695.40772.56

    Article  Google Scholar 

  15. White RM, Dickey EC (2011) The effects of residual stress distributions on indentation-induced microcracking in B4C-TiB2 eutectic ceramic composites. J Am Ceram Soc 94:4032–4039

    Article  Google Scholar 

  16. Sorrell CC, Stubican VS, Bradt RC (1986) Mechanical properties of ZrC-ZrB2 and ZrC-TiB2 directionally solidified eutectics. J Am Ceram Soc 69:317–321

    Article  Google Scholar 

  17. Chen WT, Meredith CH, Dickey EC (2015) Growth and microstructure-dependent hardness of directionally solidified WC-W2C eutectoid ceramics. J Am Ceram Soc 98:2191–2196

    Article  Google Scholar 

  18. Kurlov AS, Gusev AI (2006) Tungsten carbides and W-C phase diagram. Inorg Mater 42:121–127

    Article  Google Scholar 

  19. Rudy E, Hoffman JR (1967) Phasengleichgewichte im bereich der kubischen karbidphase im system wol-fram-kohlenstoff. Planseeber, Pulvermetall

    Google Scholar 

  20. Michalski A, Siemiaszko D (2007) Nanocrystalline cemented carbides sintered by the pulse plasma method. Int J Refract Met Hard Mater 25:153–158

    Article  Google Scholar 

  21. Huang SG, Vanmeensel K, Van der Biest O, Vleugels J (2008) Binderless WC and WC–VC materials obtained by pulsed electric current sintering. Int J Refract Met Hard Mater 26:41–47

    Article  Google Scholar 

  22. Taimatsu H, Sugiyama S, Kodaira Y (2008) Synthesis of W2C by reactive hot pressing and its mechanical properties. Mater Trans 49:1256–1261

    Article  Google Scholar 

  23. Mambo. Oxford Instruments HKL® (2006) HKL Technology. Denmark

  24. Tango. Oxford Instruments HKL® (2006) HKL Technology. Denmark

  25. Sang X, Oni AA, Lebeau JM (2014) Atom column indexing : atomic resolution image analysis through a matrix representation. Microsc Microanal 20:1764–1771

    Article  Google Scholar 

  26. DebRoy T, David SA (1995) Physical processes in fusion welding. Rev Mod Phys 67:85–112

    Article  Google Scholar 

  27. Polotai AV, Foreman JF, Dickey EC, Meinert K (2008) Laser surface processing of B4C-TiB2 eutectic. Int J Appl Ceram Technol 5:610–617

    Article  Google Scholar 

  28. Bourban S, Karapatis N, Hofmann H, Kurz W (1997) Solidification microstructure of laser remeled Al2O3-ZrO2 eutectic. Acta Metall 45:5069–5075

    Google Scholar 

  29. Kurlov AS, Gusev AI (2013) Tungsten carbide: structure, properties and application in hard metals. Springer, London

    Book  Google Scholar 

  30. Tanaka T, Otani S, Ishizawa Y (1988) Floating-zone crystal growth of WC. J Mater Sci 23:665–669. doi:10.1007/BF01174703

    Article  Google Scholar 

  31. Zhang M, Kelly P, Easton M, Taylor J (2005) Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model. Acta Mater 53:1427–1438

    Article  Google Scholar 

  32. Dickey EC, Dravid VP, Nellist PD et al (1998) Three-dimensional atomic structure of NiO-ZrO2(cubic) interfaces. Acta Mater 46:1801–1816

    Article  Google Scholar 

  33. Frageau M, Revcolevschi A (1983) Crystallography of the directionally solidified NiO-CaO eutectic. J Am Ceram Soc 66:C162–C163

    Article  Google Scholar 

  34. Dubois B, Dhalenne G, D’Yvoire F, Revcolevschi A (1986) Crystallography of the directionally solidified NiO-Gd2O3 eutectic. J Am Ceram Soc 69:C6–C8

    Article  Google Scholar 

  35. Serrano-Zabaleta S, Laguna-Bercero MA, Ortega-San-Martín L, Larrea A (2014) Orientation relationships and interfaces in directionally solidified eutectics for solid oxide fuel cell anodes. J Eur Ceram Soc 34:2123–2132

    Article  Google Scholar 

  36. Fecht HJ, Gleiter H (1985) A lock-in model for the atomic structure of interphase boundaries between metals and ionic crystals. Acta Metall 33:557–562

    Article  Google Scholar 

  37. Minford WJ, Bradt RC, Stubican VS (1979) Crystallography and microstructure of directionally solidified oxide eutectics. J Am Ceram Soc 62:154

    Article  Google Scholar 

  38. Hay RS (2007) Orientation relationships between complex low symmetry oxides: geometric criteria and interface structure for yttrium aluminate eutectics. Acta Mater 55:991–1007

    Article  Google Scholar 

  39. Hay RS, Matson LE (1994) Alumina/Yttrium-aluminum garnet crystallographic orientation relationships and interphase boundaries: observations and interpretation by geometric criteria. Acta Metall Mater 39:1981–1994

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under Grant #CMMI-1139792. The authors would like to thank Jay F. Tressler at Applied Research Laboratory, Penn State University, PA for the operation of the laser facility and Dev Banerjee of Kennametal, Inc. for useful discussions. We also acknowledge the use of the Analytical Instrumentation Facility at NCSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth C. Dickey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WT., Dickey, E.C. Crystallographic orientation relationships and interfaces in laser-processed directionally solidified WC–W2C eutectoid ceramics. J Mater Sci 51, 4371–4378 (2016). https://doi.org/10.1007/s10853-016-9749-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9749-2

Keywords

Navigation