Skip to main content
Log in

Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The report states that well-dispersed CoFe2O4 nanoparticles (NPs) with controllable morphology were prepared using an economical and facile one-pot thermal decomposition approach. Cobalt (II) acetylacetonate and Iron (III) acetylacetonate were employed as precursors instead of expensive and toxic pentacarbonyl. The transmission electron microscopy and powder X-ray diffraction investigation show that CoFe2O4 NPs possess cubic morphology, homogeneous size distribution and pure phase structure. Optical band gap was tuned from 1.147 to 0.92 eV and saturation magnetization (M s) increased from 53.91 to 84.01 emu/g for the as-prepared and annealed (700 °C) NPs. The coercivity (H c) enhanced from 1137 to 2109 Oe at room temperature, which is the highest value reported to date for CoFe2O4 NPs synthesized by thermal decomposition. All CoFe2O4 (as-prepared and annealed) NPs showed excellent ferromagnetism behaviour at room temperature. Raman studies of CoFe2O4 NPs confirm the redistribution of Co2+ from octahedral to tetrahedral site. The work demonstrates the great potential of CoFe2O4 NPs as a promising alternative for data storage device applications as well as for opto-magnetic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ling D, Hyeon T (2013) Iron oxide nanoparticles: chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9:1450–1466

    Article  Google Scholar 

  2. Jeong JM, Choi BG, Lee SC, Lee KG, Chang SJ, Han YK, Lee YB, Lee HU, Kwon S, Lee G, Lee CS, Huh YS (2013) Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv Mater 25:6250–6255

    Article  Google Scholar 

  3. Chopdekar RV, Suzuki Y (2006) Magnetoelectric coupling in epitaxial CoFe2O4 on BaTiO3. Appl Phys Lett 89:182506

    Article  Google Scholar 

  4. Zeng H, Li J, Liu JP, Wang ZL, Sun SH (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395

    Article  Google Scholar 

  5. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodispersenanocrystals. Nat Mater 3:891

    Article  Google Scholar 

  6. Sun SH (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:393–403

    Article  Google Scholar 

  7. Qu Y, Yang H, Yang N, Fan Y, Zhu H, Zou G (2006) The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater Lett 60:3548–3552

    Article  Google Scholar 

  8. Zhang Y, Yang Z, Yin D, Liu Y, Fei C, Xiong R, ShiJ Yan G (2010) Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. J Magn Magn Mater 322:3470–3475

    Article  Google Scholar 

  9. Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308:289–295

    Article  Google Scholar 

  10. Naik SR, SalKer AV (2012) Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J Mater Chem 22:2740–2750

    Article  Google Scholar 

  11. Zan F, Ma Y, Ma Q, Xu Y, Dai Z, Zheng G, Wu M, Li G (2013) Magnetic and impedance properties of nanocomposite CoFe2O4/Co0.7Fe0.3 and single-phase CoFe2O4 prepared via a one-step hydrothermal synthesis. J Am Ceram Soc 96:3100–3107

    Google Scholar 

  12. Chinnasamy CN, Jeyadevan B, Shinoda K, TohjiK Djayaprawira DJ (2003) Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4 nanoparticles. Appl Phys Lett 83:2862

    Article  Google Scholar 

  13. Eom Y, Abbas M, Noh HY, Kim CG (2016) Morphology-controlled synthesis of highly crystalline Fe3O4 and CoFe2O4 nanoparticles using a facile thermal decomposition method. Rsc Adv 6:15861–15867

    Article  Google Scholar 

  14. Mordina B, Tiwari RK, Setua DK, Sharma A (2015) Superior elastomeric nanocomposites with electrospunnanofibers and nanoparticles of CoFe2O4 for magnetorheological applications. Rsc Adv 5:19091–19105

    Article  Google Scholar 

  15. Ravindra AV, Padhan P, Prellier W (2012) Electronic structure and optical band gap of CoFe2O4 thin films. Appl Phys Lett 101:161902

    Article  Google Scholar 

  16. Holinsworth BS, Mazumdar D, Sims H, Sun QC, Yurtisigi MK, Sarker SK, Gupta A, Butler WH, Musfeldt JL (2013) Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 versus NiFe2O4. Appl Phys Lett 103:082406

    Article  Google Scholar 

  17. Abbas M, Rao BP, Islam MN, Kim KW, Naga SM, Takahashi M, Kim C (2014) Size-controlled high magnetization CoFe2O4 nanospheres and nanocubes using rapid one-pot sonochemical technique. Ceram Int 40:3269–3276

    Article  Google Scholar 

  18. Abbas M, Rao BP, Kim C (2014) Shape and size-controlled synthesis of Ni Zn ferrite nanoparticles by two different routes. Mater Chem Phys 147:443–451

    Article  Google Scholar 

  19. Ahn T, Kim JH, Yang HM, Lee JW, Kim JD (2012) Formation pathways of magnetite nanoparticles by Co-precipitation method. J Phys Chem C 116:6069–6076

    Article  Google Scholar 

  20. Shirsath et al (2016) Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci Rep 6:30074

    Article  Google Scholar 

  21. Rana AK, Kumar Y, Saxena N, Das R, Sen S, Shirage PM (2015) Studies on the control of ZnO nanostructures by wet chemical method and plausible mechanism. AIP Adv 5:097118

    Article  Google Scholar 

  22. Kumar Y, Rana AK, Bhojane P, Pusty M, Bagwe V, Sen S, Shirage PM (2015) Controlling of ZnO nanostructures by solute concentration and its effect on growth, structural and optical properties. Mater Res Express 2:105017

    Article  Google Scholar 

  23. Iqbal J, Rajpoot M, Jan T, Ahmad I (2014) Annealing induced enhancement in magnetic properties of Co0.5Zn0.5Fe2O4 nanoparticles. J Supercond Nov Magn 27:1743–1749

    Article  Google Scholar 

  24. Wolska E, Riedel E, Wolski W (1992) The evidence of \( {\text{Cd}}^{2 + } {}_{x}{\text{Fe}}_{1 - x}^{3 + } \left[ {{\text{Ni}}_{1 - x}^{2 + } {\text{Fe}}_{1 + x}^{3 + } } \right]{\text{O}}_{4} \) cation distribution based on X-ray and mössbauerdata. Phys Stat Sol 132:K51–K56

    Article  Google Scholar 

  25. Wu L, Olivier JP, David B, Wayne I, Alshakim N, Huiyuan Z, SenZ Shouheng S (2014) Monolayer assembly of ferrimagnetic Co x Fe3–x O4 nanocubes for magnetic recording. Nano Lett 14:3395–3399

    Article  Google Scholar 

  26. Yang H, Ogawa T, Hasegawa D, Takahashi M (2008) Synthesis and magnetic properties of monodisperse magnetite nanocubes. J Appl Phys 103:07D526

    Article  Google Scholar 

  27. Xia Y, Xoing Y, LimB Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew Chem Int Ed 48:60–103

    Article  Google Scholar 

  28. Khurshid H, Li W, Chandra S, Phan MH, Hadjipanayis GC, Mukherjee P, Srikanth H (2013) Mechanism and controlled growth of shape and size variant core/shell FeO/Fe3O4 nanoparticles. Nanoscale 5:7942–7952

    Article  Google Scholar 

  29. Zhou B, Zhang YW, Yu YJ, Liao CS, Yan CH (2003) Correlation between structure and intervalence charge-transfer transitions in nanocrystalline CoFe2−x M x O4 (M = Mn, Al, Sc) thin films. Phys Rev B 68:024426

    Article  Google Scholar 

  30. Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  31. Dileep K, Loukya B, Pachauri N, Gupta A, Datta R (2014) Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy. Appl Phys Lett 111:103505

    Google Scholar 

  32. Kumar CSSR (2012) Raman spectroscopy for nanomaterials characterization. Springer, Heidelberg

    Book  Google Scholar 

  33. Chandramohan P, Srinivasan MP, Velmurugan S, Narasimhan SV (2011) Cation distribution and particle size effect on Raman spectrum of CoFe2O4.J. Solid State Chem 184:89–96

    Article  Google Scholar 

  34. Yu T, Shen ZX, Shi Y, Ding J (2002) Cation migration and magnetic ordering in spinel CoFe2O4 powder: micro-Raman scattering study. J Phys 14:L613

    Google Scholar 

  35. Chamritski I, Burns G (2005) Infrared- and raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J Phys Chem B 109:4965–4968

    Article  Google Scholar 

  36. Fan X, Guan J, Cao X, Wang W, Mou F (2010) Low-temperature synthesis, magnetic and microwave electromagnetic properties of substoichiometric spinel cobalt ferrite octahedra. Eur J Inorg Chem 3:419–426

    Article  Google Scholar 

  37. Dunitz JD, Orgel LE (1957) Electronic properties of transition-metal oxides-II: cation distribution amongst octahedral and tetrahedral sites. J Phys Chem Solids 3:318–323

    Article  Google Scholar 

  38. Ammar S, Helfen A, Jouini N, Fiévet F, Rosenman I, Villain F, MoliniéPh Danot M (2001) Magnetic properties of ultrafine cobalt ferriteparticles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186–192

    Article  Google Scholar 

  39. Hanh N, Quy OK, Thuy NP, Thung LD (2003) Synthesis of cobalt ferrite nanocrystallites by the forced hydrolysis method and investigation of their magnetic properties. Physica B 327:382–384

    Article  Google Scholar 

  40. Smit J, Wijn HPJ (1959) Ferrites. Wiley, New York, p 369

    Google Scholar 

  41. Kodama RH, Berkowitz AE (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77:394

    Article  Google Scholar 

  42. Turtelli RS, Atif M, Mehmooda N, Kubel F, Biernacka K, Linert W, Grössingera R, Cz Kapusta, Sikora M (2012) Interplay between the cation distribution and production methods in cobalt ferrite. Mater Chem Phys 132:832–838

    Article  Google Scholar 

  43. Sharma D, Khare N (2014) Tuning of optical bandgap and magnetization of CoFe2O4 thin films. App Phys Lett 105:032404

    Article  Google Scholar 

  44. Fan X, Guan J, Cao X, Wang W, Mou F (2010) Low-temperature synthesis, magnetic and microwave electromagnetic properties of substoichiometric spinel cobalt ferrite octahedra. Eur J Inorg Chem 40:419–426

    Article  Google Scholar 

  45. Yang W, Yu Y, Wang L, Yang C, Li H (2015) Controlled synthesis and assembly into anisotropic arrays of magnetic cobalt-substituted magnetite nanocubes. Nanoscale 7:2877–2882

    Article  Google Scholar 

  46. Soundararajan D, Kim KH (2014) Synthesis of CoFe2O4 magnetic nanoparticles by thermal decomposition. J Magn 19:5–9

    Article  Google Scholar 

  47. Xu ST, Ma YQ, Zheng GH, Dai ZX (2015) Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles. Nanoscale 7:6520–6526

    Article  Google Scholar 

  48. Moya C, Morales MP, Batlle X, Labarta A (2015) Tuning the magnetic properties of Co-ferrite nanoparticles through the 1,2-hexadecanediol concentration in the reaction mixture. Phys Chem Chem Phys 17:13143–13149

    Article  Google Scholar 

  49. Tegus O, Bruck E, Buschow KHJ, Boer FRD (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150

    Article  Google Scholar 

  50. Franco AJ, Zapf V (2008) Temperature dependence of magnetic anisotropy in nanoparticles of Co x Fe(3−x)O4. J Magn Magn Mater 320:709–713

    Article  Google Scholar 

  51. Bean C, Livingston J (1959) Superparamagnetism. J Appl Phys 30:1205

    Article  Google Scholar 

  52. Kumar L, Kumar P, Kar M (2013) Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J Alloys Compd 551:72–81

    Article  Google Scholar 

  53. Tomita S, Jonsson PE, Akamatsu K, Nawafune H, Takayama H (2007) Controlled magnetic properties of Ni nanoparticles embedded in polyimide films. Phys Rev B 76:174432

    Article  Google Scholar 

  54. Kurtan U, Topkaya R, Baykal A (2013) A sol–gel auto-combustion synthesis of PVP/CoFe2O4 Nano-composite and its magnetic characterization. Mater Res Bull 48:4889–4895

    Article  Google Scholar 

  55. Vargas JM, Nunes WC, Socolovsky LM, Knobel M, Zanchet D (2005) Effect of dipolar interaction observed in iron-based nanoparticles. Phys Rev B 72:184428

    Article  Google Scholar 

  56. Kneller EF, Luborsky FE (1963) Particle size dependence of coercivity and remanence of single domain particles. J Appl Phys 34:656–658

    Article  Google Scholar 

  57. Guimaraes AP (2009) Nano-science and technology: principles of nanomagnetism. Springer, Berlin

    Book  Google Scholar 

  58. Pal D, Mandal M, Chaudhuri A, Das B, Sarkar D, Mandal K (2010) Micelles induced high coercivity in single domain cobalt-ferrite nanoparticles. J Appl Phys 108:124317

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology, India, which awarded the prestigious ‘Ramanujan Fellowship’ (SR/S2/RJN-121/2012) to PMS, and CSIR research grant no. 03 (1349)/16/EMR-II was also awarded to PMS. PMS is greatly thankful to Dr. Pradeep Mathur, director, IIT Indore, for encouraging the research work and providing the necessary facilities. We express our gratitude to SIC, IIT Indore for providing the XRD characterization facility. We are also thankful to Dr. Chandrachure Mukherjee, Raja Ramanna Centre for Advanced Technology, Indore for providing the UV–Visible-NIR spectroscopy measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parasharam M. Shirage.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, Y., Shirage, P.M. Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach. J Mater Sci 52, 4840–4851 (2017). https://doi.org/10.1007/s10853-016-0719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0719-5

Keywords

Navigation