Skip to main content
Log in

Synthesis of surfactants by polymerization of glycerol (meth)acrylates with fatty acids derivatives as chain ends

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The worldwide production of glycerin exceeds the demand from the chemical industry and new applications have been investigated these last years mainly in the area of additives. Here, water–soluble glycerin-based polyacrylates and polymethacrylates have been prepared by free-radical polymerization of solketal (meth)acrylate using various transfer agents derived from fatty chains. According to specific experimental conditions, linear functional oligomers were obtained. This versatile process allowed designing amphiphilic copolymers after the hydrolysis of acetal groups. These oligomers exhibit critical aggregation concentration values ranging from 5 to 15 × 10−6 mol.L−1 without any strong differences between polyacrylate and polymethacrylate series. In the case of glycerol-based polyacrylate derivatives, the observed monomodal populations can be ascribed to the low polydispersity indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bagheri S, Julkapli NM, Yehye WA (2015) Catalytic conversion of biodiesel derived raw glycerol to value added products. Renew Sustain Energy Rev 41:113. doi:10.1016/j.rser.2014.08.031

    Article  Google Scholar 

  2. Zhang H, Grinstaff MW (2014) Recent advances in glycerol polymers: chemistry and biomedical applications. Macromol Rapid Commun 35:1906. doi:10.1002/marc.201400389

    Article  Google Scholar 

  3. Zhou CHC, Beltramini JN, Fan YX, Lu GQM (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527. doi:10.1039/b707343g

    Article  Google Scholar 

  4. Mouloungui Z, Pelet S (2001) Study of the acyl transfer reaction: structure and properties of glycerol carbonate esters. Eur J Lipid Sci Technol 103:216. doi:10.1002/1438-9312(200104)103:4<216:aid-ejlt216>3.0.co;2-j

    Article  Google Scholar 

  5. Besse V, Camara F, Mechin F et al (2015) How to explain low molar masses in PolyHydroxyUrethanes (PHUs). Eur Polymer J 71:1. doi:10.1016/j.eurpolymj.2015.07.020

    Article  Google Scholar 

  6. Maisonneuve L, Lamarzelle O, Rix E, Grau E, Cramail H (2015) Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem Rev 115:12407. doi:10.1021/acs.chemrev.5b00355

    Article  Google Scholar 

  7. Rokicki G, Rakoczy P, Parzuchowski P, Sobiecki M (2005) Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate. Green Chem 7:529. doi:10.1039/b501597a

    Article  Google Scholar 

  8. Guerin W, Helou M, Slawinski M, Brusson JM, Carpentier JF, Guillaume SM (2014) Macromolecular engineering via ring-opening polymerization (3): trimethylene carbonate block copolymers derived from glycerol. Polym Chem 5:1229. doi:10.1039/c3py00955f

    Article  Google Scholar 

  9. Pham PD, Monge S, Lapinte V, Raoul Y, Robin JJ (2013) Various radical polymerizations of glycerol-based monomers. Eur J Lipid Sci Technol 115:28. doi:10.1002/ejlt.201200202

    Article  Google Scholar 

  10. Nanda MR, Zhang YS, Yuan ZS, Qin WS, Ghaziaskar HS, Xu CB (2016) Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: a review. Renew Sustain Energy Rev 56:1022. doi:10.1016/j.rser.2015.12.008

    Article  Google Scholar 

  11. Decker C, Moussa K (1990) A new class of highly reactive acrylic monomers. 1. Light-induced polymerization. makromolekulare Chemie-Rapid. Communications 11:159

    Google Scholar 

  12. Decker C, Moussa K (1991) A new class of highly reactive acrylic monomers. 2. light-induces copolymerization with difunctional oligomers. Makromolekulare Chemie 192:507–522

    Article  Google Scholar 

  13. Moussa K, Decker C (1993) Light-induced polymerization of new highly reactive acrylic monomers. J Polym Sci Part A 31:2197. doi:10.1002/pola.1993.080310903

    Article  Google Scholar 

  14. Giacomelli C, Borsali R (2008) ATRP of silylated glycerol monomethacrylate in organic medium for convenient synthesis of amphiphilic copolymers. Macromol Rapid Commun 29:573. doi:10.1002/marc.200700803

    Article  Google Scholar 

  15. Rotta J, Pham PD, Lapinte V, Borsali R, Minatti E, Robin JJ (2014) Synthesis of amphiphilic polymers based on fatty acids and glycerol-derived monomers: a study of their self-assembly in water. Macromol Chem Phys 215:131

    Article  Google Scholar 

  16. Ikkala O, ten Brinke G (2004) Hierarchical self-assembly in polymeric complexes: towards functional materials. Chem Commun. doi:10.1039/b403983a

    Google Scholar 

  17. Jenekhe SA, Chen XL (1999) Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 283:372. doi:10.1126/science.283.5400.372

    Article  Google Scholar 

  18. Liu GJ, Ding JF, Guo A, Herfort M, BazettJones D (1997) Potential skin layers for membranes with tunable nanochannels. Macromolecules 30:1851. doi:10.1021/ma961530b

    Article  Google Scholar 

  19. Liu GJ, Qiao LJ, Guo A (1996) Diblock copolymer nanofibers. Macromolecules 29:5508. doi:10.1021/ma9604653

    Article  Google Scholar 

  20. Rodriguez-Hernandez J, Checot F, Gnanou Y, Lecommandoux S (2005) Toward ‘smart’ nano-objects by self-assembly of block copolymers in solution. Prog Polym Sci 30:691. doi:10.1016/j.progpolymsci.2005.04.002

    Article  Google Scholar 

  21. Yan XH, Liu FT, Li Z, Liu GJ (2001) Poly(acrylic acid)-lined nanotubes of poly(butyl methacrylate)-block-poly(2-cinnamoyloxyethyl methacrylate). Macromolecules 34:9112. doi:10.1021/ma0112927

    Article  Google Scholar 

  22. Zhang LF, Eisenberg A (1996) Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules 29:8805. doi:10.1021/ma961376t

    Article  Google Scholar 

  23. Lim H, Kassim A, Huang N, Yarmo MA (2009) Palm-based nonionic surfactants as emulsifiers for high internal phase emulsions. J Surfactants Deterg 12:355. doi:10.1007/s11743-009-1138-2

    Article  Google Scholar 

  24. Bhatia SR, Mourchid A, Joanicot M (2001) Block copolymer assembly to control fluid rheology. Curr Opin Colloid Interface Sci 6:471. doi:10.1016/s1359-0294(01)00122-4

    Article  Google Scholar 

  25. Hamley IW (2003) Nanotechnology with soft materials. Angewandte Chemie-Inter Edit 42:1692. doi:10.1002/ange.200200546

    Article  Google Scholar 

  26. Renggli K, Baumann P, Langowska K, Onaca O, Bruns N, Meier W (2011) Selective and responsive nanoreactors. Adv Funct Mater 21:1241. doi:10.1002/adfm.201001563

    Article  Google Scholar 

  27. Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343. doi:10.1002/jps.10397

    Article  Google Scholar 

  28. Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30:267. doi:10.1002/marc.200800713

    Article  Google Scholar 

  29. Miyata K, Christie RJ, Kataoka K (2011) Polymeric micelles for nano–scale drug delivery. React Funct Polym 71:227. doi:10.1016/j.reactfunctpolym.2010.10.009

    Article  Google Scholar 

  30. Theato P, Zentel R, Schwarz S (2002) Synthesis of end-functionalized lipopolymers and their characterization with regard to polymer–supported lipid membranes. Macromol Biosci 2:387. doi:10.1002/1616-5195(200211)2:8<387:aid-mabi387>3.0.co;2-5

    Article  Google Scholar 

  31. Giardi C, Lapinte V, Charnay C, Robin JJ (2009) Nonionic polyoxazoline surfactants based on renewable source: synthesis, surface and bulk properties. React Funct Polym 69:643. doi:10.1016/j.reactfunctpolym.2009.04.008

    Article  Google Scholar 

  32. Stemmelen M, Travelet C, Lapinte V, Borsali R, Robin J-J (2013) Synthesis and self-assembly of amphiphilic polymers based on polyoxazoline and vegetable oil derivatives. Polym Chem 4:1445. doi:10.1039/c2py20840g

    Article  Google Scholar 

  33. Travelet C, Stemmelen M, Lapinte V, Dubreuil F, Robin J-J, Borsali R (2013) Amphiphilic copolymers based on polyoxazoline and grape seed vegetable oil derivatives: self-assemblies and dynamic light scattering. J Nanopart Res. doi:10.1007/s11051-013-1626-1

    Google Scholar 

  34. Camara F, Caillol S, Boutevin B (2014) Free radical polymerization study of glycerin carbonate methacrylate for the synthesis of cyclic carbonate functionalized polymers. Eur Polymer J 61:133. doi:10.1016/j.eurpolymj.2014.10.001

    Article  Google Scholar 

  35. Besse V, Camara F, Voirin C, Auvergne R, Caillol S, Boutevin B (2013) Synthesis and applications of unsaturated cyclocarbonates. Polym Chem 4:4545. doi:10.1039/c3py00343d

    Article  Google Scholar 

  36. Loubat C, Boutevin B (2000) Analysis of the telomerization of methyl methacrylate by thioglycolic acid. application to determining the probabilities of structures of synthesized telomers. Macromol Chem Phys 201:2853. doi:10.1002/1521-3935(20001201)201:18<2853:aid-macp2853>3.0.co;2-h

    Article  Google Scholar 

  37. Boyer C, Loubat C, Robin JJ, Boutevin B (2004) Synthesis of functionalized amine oligomers by free-radical telomerization of methyl methacrylate with a peculiar telogen: 2-aminoethanethiol hydrochloride. J Polym Sci Part A 42:5146. doi:10.1002/pola.20303

    Article  Google Scholar 

  38. Loubat C, Boutevin B (2000) Telomerization of acrylic acid with thioglycolic acid: effect of the solvent on the C-T value. Polym Bull 44:569. doi:10.1007/s002890070080

    Article  Google Scholar 

  39. Loubat C, Boutevin B (2001) Telomerization of acrylic acid with mercaptans: part 2. Kinetics of the synthesis of star–shaped macromolecules of acrylic acid. Polym Int 50:375. doi:10.1002/pi.638

    Article  Google Scholar 

  40. Loubat C, Javidan A, Boutevin B (2000) Analysis of the telomerization of acrylic acid by mercaptans, 1: telomerization of acrylic acid by thioglycolic acid; Influence of the natural of the solvent on the value of the transfer constant and k(p)/k(te)1/2. Macromol Chem Phys 201:2845. doi:10.1002/1521-3935(20001201)201:18<2845:aid-macp2845>3.0.co;2-7

    Article  Google Scholar 

  41. Aguiar J, Carpena P, Molina-Bolivar JA, Ruiz CC (2003) On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J Colloid Interface Sci 258:116. doi:10.1016/s0021-9797(02)00082-6

    Article  Google Scholar 

  42. Du H, Yang X, Pang X, Zhai G (2014) The synthesis, self-assembling, and biocompatibility of a novel O-carboxymethyl chitosan cholate decorated with glycyrrhetinic acid. Carbohydr Polym 111:753. doi:10.1016/j.carbpol.2014.04.095

    Article  Google Scholar 

  43. Amado E, Augsten C, Maeder K, Blume A, Kressler J (2006) Amphiphilic water soluble triblock copolymers based on poly(2,3-dihydroxypropyl methacrylate) and poly(propylene oxide): synthesis by atom transfer radical polymerization and micellization in aqueous solutions. Macromolecules 39:9486. doi:10.1021/ma060794n

    Article  Google Scholar 

  44. Jansen J, Dias AA, Dorschu M, Coussens B (2003) Fast monomers: factors affecting the inherent reactivity of acrylate monomers in photoinitiated acrylate polymerization. Macromolecules 36:3861. doi:10.1021/ma021785r

    Article  Google Scholar 

  45. Kaur B, D’Souza L, Slater LA et al (2011) Model random polyampholytes from nonpolar methacrylic esters. Macromolecules 44:3810. doi:10.1021/ma200357u

    Article  Google Scholar 

  46. Rossi NAA, Zou Y, Scott MD, Kizhakkedathu JN (2008) RAFT synthesis of acrylic copolymers containing poly(ethylene glycol) and dioxolane functional groups: toward well-defined aldehyde containing copolymers for bioconjugation. Macromolecules 41:5272. doi:10.1021/ma800606k

    Article  Google Scholar 

  47. Vo C-D, Cadman CJ, Donno R, Goos JACM, Tirelli N (2013) Combination of episulfide ring-opening polymerization with ATRP for the preparation of amphiphilic block copolymers. Macromol Rapid Commun 34:156. doi:10.1002/marc.201200636

    Article  Google Scholar 

  48. Yang J, Zhang D, Jiang S, Yang J, Nie J (2010) Synthesis of Y–shaped poly(solketal acrylate)-containing block copolymers and study on the thermoresponsive behavior for micellar aggregates. J Colloid Interface Sci 352:405. doi:10.1016/j.jcis.2010.09.014

    Article  Google Scholar 

  49. Wilhelm M, Zhao CL, Wang YC et al (1991) Polymer micelle formation. 3. Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24:1033. doi:10.1021/ma00005a010

    Article  Google Scholar 

  50. Zhen Y, Wan SR, Liu YQ, Yan HS, Shi RF, Wang CH (2005) Atom transfer radical polymerization of solketal acrylate using cyclohexanone as the solvent. Macromol Chem Phys 206:607. doi:10.1002/macp.200400414

    Article  Google Scholar 

  51. Whittaker MR, Urbani CN, Monteiro MJ (2008) Synthesis of linear and 4-arm star block copolymers of poly(methyl acrylate-b–solketal acrylate) by SET-LRP at 25 degrees C. J Polym Sci Part A 46:6346. doi:10.1002/pola.22946

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge ONIDOL for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Robin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, P.D., Monge, S., Lapinte, V. et al. Synthesis of surfactants by polymerization of glycerol (meth)acrylates with fatty acids derivatives as chain ends. J Mater Sci 52, 968–980 (2017). https://doi.org/10.1007/s10853-016-0392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0392-8

Keywords

Navigation