Skip to main content

Advertisement

Log in

Silk microfiber-reinforced silk composite scaffolds: fabrication, mechanical properties, and cytocompatibility

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mechanical reinforcement of silk membranes by embedding silk microfibers was studied. Silk microfibers of 10–600 μm long were prepared by hydrolyzing degummed silk fibers in alkali solution. The silk microfibers were mixed with silk fibroin solution (continuous phase) at various ratios to fabricate silk microfiber-reinforced composite scaffolds (SMCSs). The morphology, mechanical properties, structural characteristics, biodegradation, and cytotoxicity of the composites were investigated. Silk microfiber-reinforced membranes with 1 wt% of microfibers displayed the most homogeneous distribution of microfibers in the membrane matrix. The tensile strength and elongation at break were 10.5 ± 2.7 MPa and 56.7 ± 7.8 %, respectively, comparable to human meniscus tissue. The presence of silk microfibers did not significantly impact the secondary structure and crystallization of SMCSs. Proteolytic degradation in vitro using protease XIV showed that the 1 % silk microfiber-reinforced membranes lost 90 % weight after 5 days, a longer time frame than plain silk membrane controls. The viability of human fibroblasts (Hs 865.Sk) on the SMCSs demonstrated no cytotoxicity. SMCSs may be useful as biomaterial systems as tissue substitutes where mechanical strength is critical for functional performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gloria A, Ronca D, Russo T et al (2010) Technical features and criteria in designing fiber-reinforced composite materials: from the aerospace and aeronautical field to biomedical applications. J Appl Biomater Biomech 9:151–163

    Google Scholar 

  2. Lewis RV (2006) Spider silk: ancient ideas for new biomaterials. Chem Rev 106:3762–3774

    Article  Google Scholar 

  3. Li J, Li Y, Zhang J et al (2015) Nano polypeptide particles reinforced polymer composite fibers. ACS Appl Mater Interfaces 7:3871–3876

    Article  Google Scholar 

  4. Xu X, Jayaraman K, Morin C, Pecqueux N (2008) Life cycle assessment of wood-fibre-reinforced polypropylene composites. J Mater Process Technol 198:168–177

    Article  Google Scholar 

  5. Shchepelina O, Drachuk I, Gupta MK, Lin J, Tsukruk VV (2011) Silk-on-silk layer-by-layer microcapsules. Adv Mater 23:4655–4660

    Article  Google Scholar 

  6. Thwe MM, Liao K (2002) Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos Part A Appl Sci 33:43–52

    Article  Google Scholar 

  7. Kharlampieva E, Kozlovskaya V, Gunawidjaja R et al (2010) Flexible silk-inorganic nanocomposites: from transparent to highly reflective. Adv Funct Mater 20:840–846

    Article  Google Scholar 

  8. Rizvi GM, Semeralul H (2008) Glass-fiber-reinforced wood/plastic composites. J Vinyl Addit Technol 14:39–42

    Article  Google Scholar 

  9. Mandal BB, Park S-H, Gil ES, Kaplan DL (2011) Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32:639–651

    Article  Google Scholar 

  10. Zhao Z, Li Y, Zhang Y et al (2014) Development of silk fibroin modified poly (l-lactide)–poly (ethylene glycol)–poly (l-lactide) nanoparticles in supercritical CO2. Powder Technol 268:118–125

    Article  Google Scholar 

  11. Lu Q, Zhang X, Hu X, Kaplan DL (2010) Green process to prepare silk fibroin/gelatin biomaterial scaffolds. Macromol Biosci 10:289–298

    Article  Google Scholar 

  12. Kim HJ, Kim UJ, Leisk GG, Bayan C, Georgakoudi I, Kaplan DL (2007) Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds. Macromol Biosci 7:643–655

    Article  Google Scholar 

  13. Zuo B, Dai L, Wu Z (2006) Analysis of structure and properties of biodegradable regenerated silk fibroin fibers. J Mater Sci 41:3357–3361. doi:10.1007/s10853-005-5384-z

    Article  Google Scholar 

  14. Yang M, Shuai Y, Zhou G, Mandal N, Zhu L, Mao C (2014) Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation. ACS Appl Mater Interfaces 6:13782–13789

    Article  Google Scholar 

  15. Tungjitpornkull S, Chaochanchaikul K, Sombatsompop N (2007) Mechanical characterization of E-chopped strand glass fiber reinforced wood/PVC composites. J Thermoplast Compos Mater 20:535–550

    Article  Google Scholar 

  16. Omenetto FG, Kaplan DL (2008) A new route for silk. Nat Photonics 2:641–643

    Article  Google Scholar 

  17. Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061

    Article  Google Scholar 

  18. Yuan Q, Yao J, Chen X, Huang L, Shao Z (2010) The preparation of high performance silk fiber/fibroin composite. Polymer 51:4843–4849

    Article  Google Scholar 

  19. Pendleton M (2006) Descriptions of melissopalynological methods involving centrifugation should include data for calculating relative centrifugal force (RCF) or should express data in units of RCF or gravities (g). Grana 45:71–72

    Article  Google Scholar 

  20. Mandal BB, Grinberg A, Gil ES, Panilaitis B, Kaplan DL (2012) High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci USA 109:7699–7704

    Article  Google Scholar 

  21. Yodmuang S, McNamara SL, Nover AB et al (2015) Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 11:27–36

    Article  Google Scholar 

  22. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007

    Article  Google Scholar 

  23. Li G, Chen Y, Hu J et al (2013) A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer. Biomaterials 34:9451–9461

    Article  Google Scholar 

  24. Eli N, Oragui E, Khan W (2011) Advances in meniscal tissue engineering. Ortop Traumatol Rehabil 13:319–326

    Article  Google Scholar 

  25. Li G, Liu J, Zheng Z, Wang X, Kaplan DL (2015) Structural mimetic silk fiber-reinforced composite scaffolds using multi-angle fibers. Macromol Biosci 15:1125–1133

    Article  Google Scholar 

  26. Chao PHG, Yodmuang S, Wang X, Sun L, Kaplan DL, Vunjak-Novakovic G (2010) Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B 95:84–90

    Article  Google Scholar 

  27. Lu S, Wang X, Lu Q et al (2009) Insoluble and flexible silk films containing glycerol. Biomacromolecules 11:143–150

    Article  Google Scholar 

  28. Li C, Luo T, Zheng Z, Murphy AR, Wang X, Kaplan DL (2015) Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Biomater 11:222–232

    Article  Google Scholar 

  29. Jin HJ, Park J, Karageorgiou V et al (2005) Water-stable silk films with reduced β-sheet content. Adv Funct Mater 15:1241–1247

    Article  Google Scholar 

  30. Hu X, Shmelev K, Sun L et al (2011) Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12:1686–1696

    Article  Google Scholar 

  31. Tissakht M, Ahmed A (1995) Tensile stress-strain characteristics of the human meniscal material. J Biomech 28:411–422

    Article  Google Scholar 

  32. Li G, Li Y, Lan P et al (2014) Biodegradable weft-knitted intestinal stents: fabrication and physical changes investigation in vitro degradation. J Biomed Mater Res A 102:982–990

    Article  Google Scholar 

  33. Hu X, Kaplan D, Cebe P (2008) Dynamic protein–water relationships during β-sheet formation. Macromolecules 41:3939–3948

    Article  Google Scholar 

  34. Yang G, Zhang L, Cao X, Liu Y (2002) Structure and microporous formation of cellulose/silk fibroin blend membranes: part II. Effect of post-treatment by alkali. J Membr Sci 210:379–387

    Article  Google Scholar 

  35. Taddei P, Arai T, Boschi A, Monti P, Tsukada M, Freddi G (2006) In vitro study of the proteolytic degradation of Antheraea pernyi silk fibroin. Biomacromolecules 7:259–267

    Article  Google Scholar 

  36. Hu X, Lu Q, Kaplan DL, Cebe P (2009) Microphase separation controlled β-sheet crystallization kinetics in fibrous proteins. Macromolecules 42:2079–2087

    Article  Google Scholar 

  37. Asha S, Somashekar R, Sanjeev G (2012) Quantification of degradation and surface morphology of NB7 silk fibers irradiated by 8 MeV electron beam using XRD and SEM techniques. Fiber Polym 13:224–230

    Article  Google Scholar 

  38. Schäfer-Nolte F, Hennecke K, Reimers K et al (2014) Biomechanics and biocompatibility of woven spider silk meshes during remodeling in a rodent fascia replacement model. Ann Surg 259:781–792

    Article  Google Scholar 

  39. Xie RJ, Zhang M (2013) Effect of glycerol on structure and properties of silk fibroin/pearl powder blend films. Adv Mater Res 796:126–131

    Article  Google Scholar 

  40. Li G, Li Y, Chen G et al (2015) Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv Healthc Mater 4:1134–1151

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC, 51273138) and the National Institutes of Health (P41 EB002520). We would like to thank the support of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (LK1421) and Natural Science Foundation of Jiangsu Province (BK20150372).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqin Wang or David L. Kaplan.

Additional information

Gang Li and Fei Li have contributed to this manuscript equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Li, F., Zheng, Z. et al. Silk microfiber-reinforced silk composite scaffolds: fabrication, mechanical properties, and cytocompatibility. J Mater Sci 51, 3025–3035 (2016). https://doi.org/10.1007/s10853-015-9613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9613-9

Keywords

Navigation