Skip to main content
Log in

Review of the synergies between computational modeling and experimental characterization of materials across length scales

  • Multiscale Modeling and Experiment
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. This manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ohashi T, Barabash RI, Pang JWL, Ice G, Barabash OM (2009) X-ray microdiffraction and strain gradient crystal plasticity studies of geometrically necessary dislocations near a Ni bicrystal grain boundary. Int J Plast 25:920–941

    Article  Google Scholar 

  2. Zaafarani N, Raabe D, Singh R, Roters F, Zaefferer S (2006) Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater 54:1863–1876

    Article  Google Scholar 

  3. Von Ardenne M (1938) Das Elektronen-Rastermikroskop. Z Phys 109:553–572

    Article  Google Scholar 

  4. Seidman DN (2007) Three-dimensional atom-probe tomography: advances and applications. Annu Rev Mater Res 37:127–158

    Article  Google Scholar 

  5. Venables JA, Harland CJ (1973) Electron back-scattering patterns: a new technique for obtaining crystallographic information in the scanning electron microscope. Philos Mag 27:1193–1200

    Article  Google Scholar 

  6. Poulsen HF (2004) Three-dimensional X-ray diffraction microscopy: mapping polycrystals and their dynamics. Springer Science & Business Media, New York

    Book  Google Scholar 

  7. Horstemeyer MF (2012) Integrated computational materials engineering (ICME) for metals: using multiscale modeling to invigorate engineering design with science. Wiley, Hoboken

    Book  Google Scholar 

  8. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A Math Phys 241:376–396

    Article  Google Scholar 

  9. Mura T (1987) Micromechanics of defects in solids. Springer Science & Business Media, New York

    Book  Google Scholar 

  10. Suquet P (1987) Elements of homogenization for inelastic solid mechanics. In: Zaoui A, Sanchez-Palencia E (eds) Homogenization techniques for composite media. Springer, New York, pp 193–278

    Chapter  Google Scholar 

  11. Ke CH, Pugno N, Peng B, Espinosa HD (2005) Experiments and modeling of carbon nanotube-based NEMS devices. J Mech Phys Solids 53:1314–1333

    Article  Google Scholar 

  12. Pelesko JA, Bernstein DH (2002) Modeling MEMS and NEMS. CRC Press, Boca Raton

    Book  Google Scholar 

  13. Cao BY, Sun J, Chen M, Guo ZY (2009) Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review. Int J Mol Sci 10:4638–4706

    Article  Google Scholar 

  14. Dorogin LM, Vlassov S, Polyakov B, Antsov M, Lõhmus R, Kink I, Romanov AE (2013) Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: experimental methods and modeling. Phys Status Solidi B 250:305–317

    Article  Google Scholar 

  15. Zaumseil J, Meitl MA, Hsu JWP, Acharya BR, Baldwin KW, Loo YL, Rogers JA (2003) Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett 3:1223–1227

    Article  Google Scholar 

  16. Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BCK, Shi Y, Cui Y, et al (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci USA 109:9287–9292

    Article  Google Scholar 

  17. Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67:1721–1754

    Article  Google Scholar 

  18. Legros M, Gianola DS, Hemker KJ (2008) In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56:3380–3393

    Article  Google Scholar 

  19. Wang CM, Xu W, Liu J, Zhang JG, Saraf LV, Arey BW, Choi D, Yang ZG, Xiao J, Thevuthasan S, et al (2011) In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO\(_2\) nanowire during lithium intercalation. Nano Lett 11:1874–1880

    Article  Google Scholar 

  20. Rollett AD, Lee SB, Campman R, Rohrer GS (2007) Three-dimensional characterization of microstructure by electron back-scatter diffraction. Annu Rev Mater Res 37:627–658

    Article  Google Scholar 

  21. Groeber M, Ghosh S, Uchic MD, Dimiduk DM (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1: statistical characterization. Acta Mater 56:1257–1273

    Article  Google Scholar 

  22. Groeber MA, Jackson MA (2014) DREAM 3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3:1–17

    Article  Google Scholar 

  23. Brandt A (2002) Multiscale scientific computation: review 2001. In: Multiscale and multiresolution methods, Springer, pp 3–95

  24. Weinan E, Engquist B, Li X, Ren W (2007) Heterogeneous multiscale methods: a review. Commun Comput Phys 2:367–450

    Google Scholar 

  25. Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Cheng YT, Cheng CM (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R 44:91–149

    Article  Google Scholar 

  27. Miguel MC, Vespignani A, Zapperi S, Weiss J, Grasso JR (2001) Intermittent dislocation flow in viscoplastic deformation. Nature 410:667–671

    Article  Google Scholar 

  28. Csikor FF, Motz C, Weygand D, Zaiser M, Zapperi S (2007) Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318:251–254

    Article  Google Scholar 

  29. Chen YS, Choi W, Papanikolaou S, Sethna JP (2010) Bending crystals: emergence of fractal dislocation structures. Phys Rev Lett 105:105501

    Article  Google Scholar 

  30. Bai YL, Wang HY, Xia MF, Ke FJ (2005) Statistical mesomechanics of solid, linking coupled multiple space and time scales. Appl Mech Rev 58:372–388

    Article  Google Scholar 

  31. Liu Y, Greene MS, Chen W, Dikin DA, Liu WK (2013) Computational microstructure characterization and reconstruction for stochastic multiscale material design. Comput Aided Des 45:65–76

    Article  Google Scholar 

  32. Bachmann F, Hielscher R, Schaeben H (2011) Grain detection from 2D and 3D EBSD data-specification of the MTEX algorithm. Ultramicroscopy 111:1720–1733

    Article  Google Scholar 

  33. Germain L, Kratsch D, Salib M, Gey N (2014) Identification of sub-grains and low angle boundaries beyond the angular resolution of EBSD maps. Mater Charact 98:66–72

    Article  Google Scholar 

  34. Bjørstad PE, Widlund OB (1986) Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J Numer Anal 23:1097–1120

    Article  Google Scholar 

  35. Pothen A, Simon HD, Liou KP (1990) Partitioning sparse matrices with eigenvectors of graphs. SIAM J Matrix Anal A 11:430–452

    Article  Google Scholar 

  36. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20:359–392

    Article  Google Scholar 

  37. Krysl P, Lall S, Marsden JE (2001) Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int J Numer Methods Eng 51:479–504

    Article  Google Scholar 

  38. Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA J 40:2323–2330

    Article  Google Scholar 

  39. Bouvard JL, Ward DK, Hossain D, Nouranian S, Marin EB, Horstemeyer MF (2009) Review of hierarchical multiscale modeling to describe the mechanical behavior of amorphous polymers. J Eng Mater Technol 131:041206

    Article  Google Scholar 

  40. Li Y, Abberton BC, Kröger M, Liu WK (2013) Challenges in multiscale modeling of polymer dynamics. Polymers 5:751–832

    Article  Google Scholar 

  41. de Pablo JJ, Curtin WA (2007) Multiscale modeling in advanced materials research: challenges, novel methods, and emerging applications. MRS Bull 32:905–911

    Article  Google Scholar 

  42. Praprotnik M, Site LD, Kremer K (2008) Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu Rev Phys Chem 59:545–571

    Article  Google Scholar 

  43. Murtola T, Bunker A, Vattulainen I, Deserno M, Karttunen M (2009) Multiscale modeling of emergent materials: biological and soft matter. Phys Chem Chem Phys 11:1869–1892

    Article  Google Scholar 

  44. DeHoff RT, Rhines FN (1968) Quantitative microscopy. McGraw-Hill, New York

    Google Scholar 

  45. Fultz B, Howe JM (2012) Transmission electron microscopy and diffractometry of materials. Springer, Heidelberg

    Google Scholar 

  46. den Dekker A, Gonnissen J, De Backer A, Sijbers J, Van Aert S (2013) Estimation of unknown structure parameters from high-resolution (S)TEM images: what are the limits? Ultramicroscopy 134:34–43

    Article  Google Scholar 

  47. Watanabe M, Williams DB (1999) Atomic-level detection by X-ray microanalysis in the analytical electron microscope. Ultramicroscopy 78:89–101

    Article  Google Scholar 

  48. Genc A, Banerjee R, Thompson GB, Maher DM, Johnson AW, Fraser HL (2009) Complementary techniques for the characterization of thin film Ti/Nb multilayers. Ultramicroscopy 109:1276–1281

    Article  Google Scholar 

  49. Zhou W, Wachs IE, Kiely CJ (2012) Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy. Curr Opin Solid State Mater Sci 16:10–22

    Article  Google Scholar 

  50. Blavette D, Bostel A, Sarrau J, Deconihout B, Menand A (1993) An atom probe for three-dimensional tomography. Nature 363:432–435

    Article  Google Scholar 

  51. Marquis EA, Bachhav M, Chen Y, Dong Y, Gordon LM, Joester D, McFarland A (2013) On the current role of atom probe tomography in materials characterization and materials science. Curr Opin Solid State Mater Sci 17:217–223

    Article  Google Scholar 

  52. Marquis EA, Bachhav M, Chen Y, Dong Y, Gordon LM, Joester D, McFarland A (2015) Corrigendum to “On the current role of atom probe tomography in materials characterization and materials science” [Current Opinion Solid State Mater. Sci. 17/5 (2014) 217–223]. Curr Opin Solid State Mater Sci 19:147

  53. Sauvage X, Enikeev N, Valiev R, Nasedkina Y, Murashkin M (2014) Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al-Mg alloy. Acta Mater 72:125–136

    Article  Google Scholar 

  54. Bernier JV, Barton NR, Lienert U, Miller MP (2011) Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis. J Strain Anal Eng 46:527–547

    Article  Google Scholar 

  55. Reischig P, King A, Nervo L, Vigano N, Guilhem Y, Palenstijn WJ, Batenburg KJ, Preuss M, Ludwig W (2013) Advances in X-ray diffraction contrast tomography: flexibility in the setup geometry and application to multiphase materials. J Appl Crystallogr 46:297–311

    Article  Google Scholar 

  56. Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59:1–43

    Article  Google Scholar 

  57. Schuren JC, Shade PA, Bernier JV, Li SF, Blank B, Lind J, Kenesei P, Lienert U, Suter RM, Turner TJ, Dimiduk DM, Almer J (2014) New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr Opin Solid State Mater Sci 19:235–244

    Article  Google Scholar 

  58. Van Petegem S, Li L, Anderson PM, Van Swygenhoven H (2013) Deformation mechanisms in nanocrystalline metals: insights from in-situ diffraction and crystal plasticity modelling. Thin Solid Films 530:20–24

    Article  Google Scholar 

  59. Obstalecki M, Wong SL, Dawson PR, Miller MP (2014) Quantitative analysis of crystal scale deformation heterogeneity during cyclic plasticity using high-energy X-ray diffraction and finite-element simulation. Acta Mater 75:259–272

    Article  Google Scholar 

  60. Lentz M, Klaus M, Beyerlein IJ, Zecevic M, Reimers W, Knezevic M (2015) In situ X-ray diffraction and crystal plasticity modeling of the deformation behavior of extruded Mg-Li-(Al) alloys: an uncommon tension-compression asymmetry. Acta Mater 86:254–268

    Article  Google Scholar 

  61. Clark JN, Beitra L, Xiong G, Higginbotham A, Fritz DM, Lemke HT, Zhu D, Chollet M, Williams GJ, Messerschmidt M, et al (2013) Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. Science 341:56–59

    Article  Google Scholar 

  62. Milathianaki D, Boutet S, Williams GJ, Higginbotham A, Ratner D, Gleason AE, Messerschmidt M, Seibert MM, Swift D, Hering P, et al (2013) Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342:220–223

    Article  Google Scholar 

  63. Golovin YI (2008) Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: a review. Phys Solid State 50:2205–2236

    Article  Google Scholar 

  64. Lodes MA, Hartmaier A, Göken M, Durst K (2011) Influence of dislocation density on the pop-in behavior and indentation size effect in CaF\(_2\) single crystals: experiments and molecular dynamics simulations. Acta Mater 59:4264–4273

    Article  Google Scholar 

  65. Begau C, Hartmaier A, George EP, Pharr GM (2011) Atomistic processes of dislocation generation and plastic deformation during nanoindentation. Acta Mater 59:934–942

    Article  Google Scholar 

  66. Ruestes CJ, Stukowski A, Tang Y, Tramontina DR, Erhart P, Remington BA, Urbassek HM, Meyers MA, Bringa EM (2014) Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution. Mater Sci Eng A 613:390–403

    Article  Google Scholar 

  67. Zambaldi C, Yang Y, Bieler TR, Raabe D (2012) Orientation informed nanoindentation of \(\alpha \)-titanium: indentation pileup in hexagonal metals deforming by prismatic slip. J Mater Res 27:356–367

    Article  Google Scholar 

  68. Selvarajou B, Shin JH, Ha TK, Choi IS, Joshi SP, Han HN (2014) Orientation-dependent indentation response of magnesium single crystals: modeling and experiments. Acta Mater 81:358–376

    Article  Google Scholar 

  69. Yao WZ, Krill CE III, Albinski B, Schneider HC, You JH (2014) Plastic material parameters and plastic anisotropy of tungsten single crystal: a spherical micro-indentation study. J Mater Sci 49:3705–3715. doi:10.1007/s10853-014-8080-z

    Article  Google Scholar 

  70. Minor AM, Morris JWJ, Stach EA (2001) Quantitative in situ nanoindentation in an electron microscope. Appl Phys Lett 79:1625–1627

    Article  Google Scholar 

  71. Legros M, Gianola DS, Motz C (2010) Quantitative in situ mechanical testing in electron microscopes. MRS Bull 35:354–360

    Article  Google Scholar 

  72. Kiener D, Hosemann P, Maloy SA, Minor AM (2011) In situ nanocompression testing of irradiated copper. Nat Mater 10:608–613

    Article  Google Scholar 

  73. Ohmura T, Zhang L, Sekido K, Tsuzaki K (2012) Effects of lattice defects on indentation-induced plasticity initiation behavior in metals. J Mater Res 27:1742–1749

    Article  Google Scholar 

  74. Issa I, Amodeo J, Réthoré J, Joly-Pottuz L, Esnouf C, Morthomas J, Perez M, Chevalier J, Masenelli-Varlot K (2015) In situ investigation of MgO nanocube deformation at room temperature. Acta Mater 86:295–304

    Article  Google Scholar 

  75. Liu Y, Li N, Bufford D, Lee JH, Wang J, Wang H, Zhang X (2015) In situ nanoindentation studies on detwinning and work hardening in nanotwinned monolithic metals. JOM :1–9

  76. Soer WA, De Hosson JTM, Minor AM, Morris JW, Stach EA (2004) Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al-Mg thin films. Acta Mater 52:5783–5790

    Article  Google Scholar 

  77. Gouldstone A, Chollacoop N, Dao M, Li J, Minor AM, Shen YL (2007) Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater 55:4015–4039

    Article  Google Scholar 

  78. Bufford D, Liu Y, Wang J, Wang H, Zhang X (2014) In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat Commun 5

  79. Boehler J, Elaoufi L, Raclin J (1987) On experimental testing methods for anisotropic materials. Res Mech 21:73–95

    Google Scholar 

  80. Bretheau T, Mussot P, Rey C (1984) Microscale plastic inhomogeneities and macroscopic behavior of single and multiphase materials. J Eng Mater-T ASME 106:304–310

    Article  Google Scholar 

  81. Allais L, Bornert M, Bretheau T, Caldemaison D (1994) Experimental characterization of the local strain field in a heterogeneous elastoplastic material. Acta Metall Mater 42:3865–3880

    Article  Google Scholar 

  82. Rey C, DeLesegno PV (1997) Experimental analysis of bifurcation and post bifurcation in iron single crystals. Mater Sci Eng A 234:1007–1010

    Article  Google Scholar 

  83. Martin G, Sinclair CW, Schmitt JH (2013) Plastic strain heterogeneities in an Mg-1Zn-0.5Nd alloy. Scr Mater 68:695–698

    Article  Google Scholar 

  84. Delaire F, Raphanel JL, Rey C (2000) Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: experimental study and finite element simulations. Acta Mater 48:1075–1087

    Article  Google Scholar 

  85. Soppa E, Doumalin P, Binkele P, Wiesendanger T, Bornert M, Schmauder S (2001) Experimental and numerical characterisation of in-plane deformation in two-phase materials. Comput Mater Sci 21:261–275

    Article  Google Scholar 

  86. Heripre E, Dexet M, Crepin J, Gélebart L, Roos A, Bornert M, Caldemaison D (2007) Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials. Int J Plast 23:1512–1539

    Article  Google Scholar 

  87. Doumalin P, Bornert M (2000) Micromechanical applications of digital image correlation techniques. In: Interferometry in speckle light: theory and applications, pp 67–74

  88. Rehrl C, Kleber S, Antretter T, Pippan R (2011) A methodology to study crystal plasticity inside a compression test sample based on image correlation and EBSD. Mater Charact 62:793–800

    Article  Google Scholar 

  89. Ghadbeigi H, Pinna C, Celotto S (2012) Quantitative strain analysis of the large deformation at the scale of microstructure: comparison between digital image correlation and microgrid techniques. Exp Mech 52:1483–1492

    Article  Google Scholar 

  90. Vanderesse N, Lagacé M, Bridier F, Bocher P (2013) An open source software for the measurement of deformation fields by means of digital image correlation. Microsc Microanal 19:820–821

    Google Scholar 

  91. Tasan CC, Diehl M, Yan D, Zambaldi C, Shanthraj P, Roters F, Raabe D (2014) Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys. Acta Mater 81:386–400

    Article  Google Scholar 

  92. Stinville JC, Vanderesse N, Bridier F, Bocher P, Pollock TM (2015) High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy. Acta Mater 98:29–42

    Article  Google Scholar 

  93. Adams B, Wright S, Kunze K (1993) Orientation imaging: the emergence of a new microscopy. Metall Trans A 24:819–831

    Article  Google Scholar 

  94. Thomas I, Zaefferer S, Friedel F, Raabe D (2003) High-resolution EBSD investigation of deformed and partially recrystallized IF steel. Adv Eng Mater 5:566–570

    Article  Google Scholar 

  95. Mishra SK, Pant P, Narasimhan K, Rollett AD, Samajdar I (2009) On the widths of orientation gradient zones adjacent to grain boundaries. Scr Mater 61:273–276

    Article  Google Scholar 

  96. Clair A, Foucault M, Calonne O, Lacroute Y, Markey L, Salazar M, Vignal V, Finot E (2011) Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges. Acta Mater 59:3116–3123

    Article  Google Scholar 

  97. Jedrychowski M, Tarasiuk J, Bacroix B, Wronski S (2013) Electron backscatter diffraction investigation of local misorientations and orientation gradients in connection with evolution of grain boundary structures in deformed and annealed zirconium: a new approach in grain boundary analysis. J Appl Crystallogr 46:483–492

    Article  Google Scholar 

  98. Cepeda-Jimenez CM, Molina-Aldareguia JM, Perez-Prado MT (2015) Effect of grain size on slip activity in pure magnesium polycrystals. Acta Mater 84:443–456

    Article  Google Scholar 

  99. Zaefferer S, Romano P, Friedel F (2008) EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels. J Microsc Oxf 230:499–508

    Article  Google Scholar 

  100. Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A 527:2738–2746

    Article  Google Scholar 

  101. Wilkinson AJ, Clarke EE, Britton TB, Littlewood P, Karamched PS (2010) High-resolution electron backscatter diffraction: an emerging tool for studying local deformation. J Strain Anal Eng 45:365–376

    Article  Google Scholar 

  102. Ruggles TJ, Fullwood DT (2013) Estimations of bulk geometrically necessary dislocation density using high resolution EBSD. Ultramicroscopy 133:8–15

    Article  Google Scholar 

  103. Liang H, Dunne FPE (2009) GND accumulation in bi-crystal deformation: crystal plasticity analysis and comparison with experiments. Int J Mech Sci 51:326–333

    Article  Google Scholar 

  104. Beausir B, Fressengeas C (2013) Disclination densities from EBSD orientation mapping. Int J Solids Struct 50:137–146

    Article  Google Scholar 

  105. Bingham MA, Lograsso BK, Laabs FC (2010) A statistical analysis of the variation in measured crystal orientations obtained through electron backscatter diffraction. Ultramicroscopy 110:1312–1319

    Article  Google Scholar 

  106. Beyerlein IJ, Capolungo L, Marshall PE, McCabe RJ, Tomé CN (2010) Statistical analyses of deformation twinning in magnesium. Philos Mag 90:2161–2190

    Article  Google Scholar 

  107. Juan PA, Pradalier C, Berbenni S, McCabe RJ, Tomé CN, Capolungo L (2015) A statistical analysis of the influence of microstructure and twin-twin junctions on twin nucleation and twin growth in Zr. Acta Mater 95:399–410

    Article  Google Scholar 

  108. Gerber PH, Tarasiuk J, Chiron R, Bacroix B (2005) Estimation of the recrystallized volume fraction from local misorientation calculations. Arch Metall Mater 50:747–755

    Google Scholar 

  109. Zaefferer S (2000) New developments of computer-aided crystallographic analysis in transmission electron microscopy. J Appl Crystallogr 33:10–25

    Article  Google Scholar 

  110. Rauch EF, Veron M (2014) Automated crystal orientation and phase mapping in TEM. Mater Charact 98:1–9

    Article  Google Scholar 

  111. Leff AC, Weinberger CR, Taheri ML (2015) Estimation of dislocation density from precession electron diffraction data using the Nye tensor. Ultramicroscopy 153:9–21

    Article  Google Scholar 

  112. Hytch MJ, Snoeck E, Kilaas R (1998) Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74:131–146

    Article  Google Scholar 

  113. Lubk A, Javon E, Cherkashin N, Reboh S, Gatel C, Hytch M (2014) Dynamic scattering theory for dark-field electron holography of 3D strain fields. Ultramicroscopy 136:42–49

    Article  Google Scholar 

  114. Béché A, Rouvière JL, Barnes JP, Cooper D (2013) Strain measurement at the nanoscale: comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography. Ultramicroscopy 131:10–23

    Article  Google Scholar 

  115. Rowenhorst DJ, Gupta A, Feng CR, Spanos G (2006) 3D crystallographic and morphological analysis of coarse martensite: combining EBSD and serial sectioning. Scr Mater 55:11–16

    Article  Google Scholar 

  116. Thebault J, Solas D, Rey C, Baudin T, Fandeur O, Clavel M (2008) Polycrystalline modelling of Udimet 720 forging. In: Superalloys 2008. TMS, pp 985–992

  117. Cédat D, Fandeur O, Rey C, Raabe D (2012) Polycrystal model of the mechanical behavior of a Mo-TiC 30 vol.% metal-ceramic composite using a three-dimensional microstructure map obtained by dual beam focused ion beam scanning electron microscopy. Acta Mater 60:1623–1632

    Article  Google Scholar 

  118. Uchic MD, Groeber MA, Dimiduk DM, Simmons JP (2006) 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scr Mater 55:23–28

    Article  Google Scholar 

  119. Endo T, Sugino Y, Ohono N, Ukai S, Miyazaki N, Wang Y, Ohnuki S (2014) Three-dimensional characterization of ODS ferritic steel using by FIB-SEM serial sectioning method. Microscopy 63:i23–i23

    Article  Google Scholar 

  120. Yamasaki S, Mitsuhara M, Ikeda K, Hata S, Nakashima H (2015) 3D visualization of dislocation arrangement using scanning electron microscope serial sectioning method. Scr Mater 101:80–83

    Article  Google Scholar 

  121. Logé R, Resk H, Sun Z, Delannay L, Bernacki M (2010) Modeling of plastic deformation and recrystallization of polycrystals using digital microstructures and adaptive meshing techniques. Steel Res Int 81:1420–1425

    Google Scholar 

  122. Baruchel J, Buffiere JY, Cloetens P, Di Michiel M, Ferrie E, Ludwig W, Maire E, Salvo L (2006) Advances in synchrotron radiation microtomography. Scr Mater 55:41–46

    Article  Google Scholar 

  123. Evrard P, El Bartali A, Aubin V, Rey C, Degallaix S, Kondo D (2010) Influence of boundary conditions on bi-phased polycrystal microstructure calculation. Int J Solids Struct 47:1979–1986

    Article  Google Scholar 

  124. Oddershede J, Camin B, Schmidt S, Mikkelsen LP, Sørensen HO, Lienert U, Poulsen HF, Reimers W (2012) Measuring the stress field around an evolving crack in tensile deformed Mg AZ31 using three-dimensional X-ray diffraction. Acta Mater 60:3570–3580

    Article  Google Scholar 

  125. Withers PJ, Preuss M (2012) Fatigue and damage in structural materials studied by X-ray tomography. Annu Rev Mater Res 42:81–103

    Article  Google Scholar 

  126. Poulsen HF (2012) An introduction to three-dimensional X-ray diffraction microscopy. J Appl Crystallogr 45:1084–1097

    Article  Google Scholar 

  127. Chow W, Solas D, Puel G, Perrin E, Baudin T, Aubin V (2014) Measurement of complementary strain fields at the grain scale. Adv Mater Res, Trans Technol Publ 996:64–69

    Google Scholar 

  128. Miller MP, Dawson PR (2014) Understanding local deformation in metallic polycrystals using high energy X-rays and finite elements. Curr Opin Solid State Mater Sci 18:286–299

    Article  Google Scholar 

  129. Pokharel R, Lind J, Kanjarla AK, Lebensohn RA, Li SF, Kenesei P, Suter RM, Rollett AD (2014) Polycrystal plasticity: comparison between grain—scale observations of deformation and simulations. Annu Rev Condens Mater Phys 5:317–346

    Article  Google Scholar 

  130. Olsson CO, Boström M, Buslaps T, Steuwer A (2015) Strain profiling of a ferritic-martensitic stainless steel sheet: comparing synchrotron with conventional X-Ray diffraction. Strain 51:71–77

    Article  Google Scholar 

  131. Pokharel R, Lind J, Li SF, Kenesei P, Lebensohn RA, Suter RM, Rollett AD (2015) In-situ observation of bulk 3D grain evolution during plastic deformation in polycrystalline Cu. Int J Plast 67:217–234

    Article  Google Scholar 

  132. Spear AD, Li SF, Lind JF, Suter RM, Ingraffea AR (2014) Three-dimensional characterization of microstructurally small fatigue-crack evolution using quantitative fractography combined with post-mortem X-ray tomography and high-energy X-ray diffraction microscopy. Acta Mater 76:413–424

    Article  Google Scholar 

  133. Burteau A, N’Guyen F, Bartout JD, Forest S, Bienvenu Y, Saberi S, Naumann D (2012) Impact of material processing and deformation on cell morphology and mechanical behavior of polyurethane and nickel foams. Int J Solids Struct 49:2714–2732

    Article  Google Scholar 

  134. Jornsanoh P, Thollet G, Ferreira J, Masenelli-Varlot K, Gauthier C, Bogner A (2011) Electron tomography combining ESEM and STEM: a new 3D imaging technique. Ultramicroscopy 111:1247–1254

    Article  Google Scholar 

  135. Masenelli-Varlot K, Malchère A, Ferreira J, Bals Heidari Mezerji Hand,S, Messaoudi C, Marco Garrido S (2014) Wet-STEM tomography: principles, potentialities and limitations. Microsc Microanal 20:366–375

  136. Browning ND, Bonds MA, Campbell GH, Evans JE, LaGrange T, Jungjohann KL, Masiel DJ, McKeown J, Mehraeen S, Reed BW, et al (2012) Recent developments in dynamic transmission electron microscopy. Curr Opin Solid State Mater Sci 16:23–30

    Article  Google Scholar 

  137. Flannigan DJ, Zewail AH (2012) 4D electron microscopy: principles and applications. Acc Chem Res 45:1828–1839

    Article  Google Scholar 

  138. Baum P (2014) Towards ultimate temporal and spatial resolutions with ultrafast single-electron diffraction. J Phys B 47:124005

    Article  Google Scholar 

  139. Kelly TF, Gribb T, Olson JD, Martens RL, Shepard JD, Wiener SA, Kunicki TC, Ulfig RM, Lenz DR, Strennen EM, et al (2004) First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10:373–383

    Article  Google Scholar 

  140. Isheim D, Kolli RP, Fine ME, Seidman DN (2006) An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels. Scr Mater 55:35–40

    Article  Google Scholar 

  141. Kelly TF, Miller MK (2007) Atom probe tomography. Rev Sci Inst 78:031101

    Article  Google Scholar 

  142. Miller MK, Kelly TF, Rajan K, Ringer SP (2012) The future of atom probe tomography. Mater Today 15:158–165

    Article  Google Scholar 

  143. LaGrange T, Reed BW, Santala MK, McKeown JT, Kulovits A, Wiezorek JMK, Nikolova L, Rosei F, Siwick BJ, Campbell GH (2012) Approaches for ultrafast imaging of transient materials processes in the transmission electron microscope. Micron 43:1108–1120

    Article  Google Scholar 

  144. Kalidindi SR, De Graef M (2015) Materials data science: current status and future outlook. Annu Rev Mater Res 45:171–193

    Article  Google Scholar 

  145. Molinari A, Ahzi S, Kouddane R (1997) On the self-consistent modeling of elastic-plastic behavior of polycrystals. Mech Mater 26:43–62

    Article  Google Scholar 

  146. Lebensohn RA, Canova GR (1997) A self-consistent approach for modelling texture development of two-phase polycrystals: application to titanium alloys. Acta Mater 45:3687–3694

    Article  Google Scholar 

  147. Berbenni S, Favier V, Berveiller M (2007) Impact of the grain size distribution on the yield stress of heterogeneous materials. Int J Plast 23:114–142

    Article  Google Scholar 

  148. Zeghadi A, Forest S, Gourgues AF, Bouaziz O (2007) Ensemble averaging stress-strain fields in polycrystalline aggregates with a constrained surface microstructure-Part 2: crystal plasticity. Philos Mag 87:1425–1446

    Article  Google Scholar 

  149. Schroder J (2014) A numerical two-scale homogenization scheme: the FE\(^2\)-method. In: Schroder J, Hackl K (eds.) Plasticity and beyond, Springer Vienna, vol. 550 of CISM International Centre for Mechanical Sciences, pp 1–64

  150. Cailletaud G, Forest S, Jeulin D, Feyel F, Galliet I, Mounoury V, Quilici S (2003) Some elements of microstructural mechanics. Comput Mater Sci 27:351–374

    Article  Google Scholar 

  151. Li Z, Wen B, Zabaras N (2010) Computing mechanical response variability of polycrystalline microstructures through dimensionality reduction techniques. Comput Mater Sci 49:568–581

    Article  Google Scholar 

  152. Guilleminot J, Noshadravan A, Soize C, Ghanem RG (2011) A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures. Comput Method Appl Mech Eng 200:1637–1648

    Article  Google Scholar 

  153. Fullwood DT, Niezgoda SR, Kalidindi SR (2008) Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater 56:942–948

    Article  Google Scholar 

  154. Xu H, Dikin DA, Burkhart C, Chen W (2014) Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials. Comput Mater Sci 85:206–216

    Article  Google Scholar 

  155. Turner DM, Kalidindi SR (2016) Statistical construction of 3-D microstructures from 2-D exemplars collected on oblique sections. Acta Mater 102:136–148

    Article  Google Scholar 

  156. Altendorf H, Latourte F, Jeulin D, Faessel M, Saintoyant L (2014) 3D reconstruction of a multiscale microstructure by anisotropic tessellation models. Image Anal Stereol 33:121–130

    Article  Google Scholar 

  157. Li SF, Suter RM (2013) Adaptive reconstruction method for three-dimensional orientation imaging. J Appl Crystallogr 46:512–524

    Article  Google Scholar 

  158. Lieberman EJ, Rollett AD, Lebensohn RA, Kober EM (2015) Calculation of grain boundary normals directly from 3D microstructure images. Model Simul Mater Sci 23:035005

    Article  Google Scholar 

  159. Herrera-Solaz V, LLorca J, Dogan E, Karaman I, Segurado J (2014) An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: application to AZ31 Mg alloy. Int J Plast 57:1–15

  160. Sab K (1992) On the homogenization and the simulation of random materials. Eur J Mech A Solid 5:585–607

    Google Scholar 

  161. Bourgeat A, Mikelic A, Wright S (1994) Stochastic two-scale convergence in the mean and applications. J Reine Angew Math 456:19–52

    Google Scholar 

  162. Caffarelli LA, Souganidis PE, Wang L (2005) Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Commun Pur Appl Math 58:319–361

    Article  Google Scholar 

  163. Bourgeat A, Piatnitski A (2004) Approximations of effective coefficients in stochastic homogenization. Ann I H Poincaré-Pr 40:153–165

    Article  Google Scholar 

  164. Cottereau R (2013) Numerical strategy for unbiased homogenization of random materials. Int J Numer Methods Eng 95:71–90

    Article  Google Scholar 

  165. Koutsourelakis PS (2007) Stochastic upscaling in solid mechanics: an exercise in machine learning. J Comput Phys 226:301–325

    Article  Google Scholar 

  166. Soize C (2008) Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size. Probab Eng Mech 23:307–323

    Article  Google Scholar 

  167. Clement A, Soize C, Yvonnet J (2013) Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Comput Methods Appl Mech Eng 254:61–82

    Article  Google Scholar 

  168. Xu XF (2007) A multiscale stochastic finite element method on elliptic problems involving uncertainties. Comput Methods Appl Mech Eng 196:2723–2736

    Article  Google Scholar 

  169. Chevreuil M, Nouy A, Safatly E (2013) A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties. Comput Methods Appl Mech Eng 255:255–274

    Article  Google Scholar 

  170. Ben Dhia H (1998) Multiscale mechanical problems: the Arlequin method. Cr Acad Sci II B 326:899–904

    Google Scholar 

  171. Cottereau R, Clouteau D, Ben Dhia H, Zaccardi C (2011) A stochastic-deterministic coupling method for continuum mechanics. Comput Methods Appl Mech Eng 200:3280–3288

    Article  Google Scholar 

  172. Le Guennec Y, Cottereau R, Clouteau D, Soize C (2014) A coupling method for stochastic continuum models at different scales. Probab Eng Mech 37:138–147

    Article  Google Scholar 

  173. Puel G, Aubry D (2014) Efficient fatigue simulation using periodic homogenization with multiple time scales. Int J Multiscale Commun 12:291–318

    Article  Google Scholar 

  174. Fish J, Bailakanavar M, Powers L, Cook T (2012) Multiscale fatigue life prediction model for heterogeneous materials. Int J Numer Methods Eng 91:1087–1104

    Article  Google Scholar 

  175. Ren W (2007) Seamless multiscale modeling of complex fluids using fiber bundle dynamics. Commun Math Sci 5:1027–1037

    Article  Google Scholar 

  176. Weinan E, Liu D, Vanden-Eijnden E (2007) Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales. J Comput Phys 221:158–180

    Article  Google Scholar 

  177. Lao J, Tam MN, Pinisetty D, Gupta N (2013) Molecular dynamics simulation of FCC metallic nanowires: a review. JOM 65:175–184

    Article  Google Scholar 

  178. Romig AD Jr, Dugger MT, McWhorter PJ (2003) Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability. Acta Mater 51:5837–5866

    Article  Google Scholar 

  179. Lee Z, Ophus C, Fischer LM, Nelson-Fitzpatrick N, Westra KL, Evoy S, Radmilovic V, Dahmen U, Mitlin D (2006) Metallic NEMS components fabricated from nanocomposite Al-Mo films. Nanotechnology 17:3063–3070

    Article  Google Scholar 

  180. Shaw TM, Trolier-McKinstry S, McIntyre PC (2000) The properties of ferroelectric films at small dimensions. Annu Rev Mater Sci 30:263–298

    Article  Google Scholar 

  181. Gianola DS, Eberl C (2009) Micro- and nanoscale tensile testing of materials. JOM 61:24–35

    Article  Google Scholar 

  182. Fleck NA, Deshpande VS, Ashby MF (2010) Micro-architectured materials: past, present and future. Proc R Soc A Math Phys 466:2495–2516

    Article  Google Scholar 

  183. Ashby M (2013) Designing architectured materials. Scr Mater 68:4–7

    Article  Google Scholar 

  184. Embury D, Bouaziz O (2010) Steel-based composites: driving forces and classifications. Annu Rev Mater Res 40:213–241

    Article  Google Scholar 

  185. Ramirez DA, Murr LE, Li SJ, Tian YX, Martinez E, Martinez JL, Machado BI, Mand Gaytan S, Medina F, Wicker RB (2011) Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater Sci Eng A 528:5379–5386

    Article  Google Scholar 

  186. Simonelli M, Tse YY, Tuck C (2014) Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Mater Sci Eng A 616:1–11

    Article  Google Scholar 

  187. Kumar KS, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774

    Article  Google Scholar 

  188. Shimokawa T, Oguro T, Tanaka M, Higashida K, Ohashi T (2014) A multiscale approach for the deformation mechanism in pearlite microstructure: atomistic study of the role of the heterointerface on ductility. Mater Sci Eng A 598:68–76

    Article  Google Scholar 

  189. Van Vliet KJ, Li J, Zhu T, Yip S, Suresh S (2003) Quantifying the early stages of plasticity through nanoscale experiments and simulations, Phys Rev B 67:104105

  190. Di Gioacchino F, Clegg WJ (2014) Mapping deformation in small-scale testing. Acta Mater 78:103–113

    Article  Google Scholar 

  191. Pollock TM, LeSar R (2013) The feedback loop between theory, simulation and experiment for plasticity and property modeling. Curr Opin Solid State Mater Sci 17:10–18

    Article  Google Scholar 

  192. Phillips PJ, Brandes MC, Mills MJ, De Graef M (2011) Diffraction contrast STEM of dislocations: imaging and simulations. Ultramicroscopy 111:1483–1487

    Article  Google Scholar 

  193. Coleman SP, Spearot DE (2015) Atomistic simulation and virtual diffraction characterization of homophase and heterophase alumina interfaces. Acta Mater 82:403–413

    Article  Google Scholar 

  194. Stukowski A, Markmann J, Weissmüller J, Albe K (2009) Atomistic origin of microstrain broadening in diffraction data of nanocrystalline solids. Acta Mater 57:1648–1654

    Article  Google Scholar 

  195. Bristowe PD, Sass SL (1980) The atomic structure of a large angle [001] twist boundary in gold determined by a joint computer modelling and X-ray diffraction study. Acta Metall 28:575–588

    Article  Google Scholar 

  196. Bristowe PD, Balluffi RW (1984) Effect of secondary relaxations on diffraction from high-\(\sigma \) [001] twist boundaries. Surf Sci 144:14–27

    Article  Google Scholar 

  197. Oh Y, Vitek V (1986) Structural multiplicity of \(\sigma \) = 5 (001) twist boundaries and interpretation of X-ray diffraction from these boundaries. Acta Metall 34:1941–1953

    Article  Google Scholar 

  198. Higginbotham A, Suggit MJ, Bringa EM, Erhart P, Hawreliak JA, Mogni G, Park N, Remington BA, Wark JS (2013) Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal. Phys Rev B 88:104105

    Article  Google Scholar 

  199. Mogni G, Higginbotham A, Gaál-Nagy K, Park N, Wark JS (2014) Molecular dynamics simulations of shock-compressed single-crystal silicon. Phys Rev B 89:064104

    Article  Google Scholar 

  200. Van Swygenhoven H, Budrović Ž, Derlet PM, Frøseth AG, Van Petegem S (2005) In situ diffraction profile analysis during tensile deformation motivated by molecular dynamics. Mater Sci Eng A 400:329–333

    Article  Google Scholar 

  201. Leyssale JM, Da Costa JP, Germain C, Weisbecker P, Vignoles GL (2009) An image-guided atomistic reconstruction of pyrolytic carbons. Appl Phys Lett 95:231912

    Article  Google Scholar 

  202. Robertson AW, Montanari B, He K, Allen CS, Wu YA, Harrison NM, Kirkland AI, Warner JH (2013) Structural reconstruction of the graphene monovacancy. ACS Nano 7:4495–4502

    Article  Google Scholar 

  203. Picard YN, Liu M, Lammatao J, Kamaladasa R, De Graef M (2014) Theory of dynamical electron channeling contrast images of near-surface crystal defects. Ultramicroscopy 146:71–78

    Article  Google Scholar 

  204. Schlesinger S, Crosbie RE, Gagne RE, Innis GS, Lalwani CS, Loch J, Sylvester RJ, Wright RD, Kheir N, Bartos D (1979) Terminology for model credibility. Simulation 32:103–104

    Article  Google Scholar 

  205. National Research Council (2008) Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. The National Academies Press, Washington, DC

    Google Scholar 

  206. McDowell D, Olson G (2008) Concurrent design of hierarchical materials and structures. Sci Model Simul 15:207–240

    Article  Google Scholar 

  207. Thacker BH, Doebling SW, Hemez FM, Anderson MC, Pepin JE, Rodriguez EA (2004) Concepts of model verification and validation, Technical Report LA-14167, Los Alamos National Lab

  208. Oberkampf WL, Trucano TG, Hirsch C (2004) Verification, validation, and predictive capability in computational engineering and physics. Appl Mech Rev 57:345–384

    Article  Google Scholar 

  209. Cowles B, Backman D, Dutton R (2012) Verification and validation of ICME methods and models for aerospace applications. Integr Mater Manuf Innov 1:1–16

    Article  Google Scholar 

  210. Wei X, Kysar JW (2012) Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes. Int J Solids Struct 49:3201–3209

    Article  Google Scholar 

  211. Pen HM, Liang YC, Luo XC, Bai QS, Goel S, Ritchie JM (2011) Multiscale simulation of nanometric cutting of single crystal copper and its experimental validation. Comput Mater Sci 50:3431–3441

    Article  Google Scholar 

  212. Gates TS, Odegard GM, Frankland SJV, Clancy TC (2005) Computational materials: multi-scale modeling and simulation of nanostructured materials. Compos Sci Technol 65:2416–2434

    Article  Google Scholar 

  213. Fan J (2011) Multiscale analysis of deformation and failure of materials. Wiley, Chichester

  214. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  215. McDowell DL, Gall K, Horstemeyer MF, Fan J (2003) Microstructure-based fatigue modeling of cast A356–T6 alloy. Eng Fract Mech 70:49–80

    Article  Google Scholar 

  216. Horstemeyer MF (2010) Multiscale modeling: a review. In: Shukla MK, Leszczynski J (eds) Practical aspects of computational chemistry. Springer, New York, pp 87–135

  217. Chawla N, Deng X (2005) Microstructure and mechanical behavior of porous sintered steels. Mater Sci Eng A 390:98–112

    Article  Google Scholar 

  218. Roberts AP, Garboczi EJ (2001) Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Mater 49:189–197

    Article  Google Scholar 

  219. Ghosh S, Moorthy S (2004) Three dimensional voronoi cell finite element model for microstructures with ellipsoidal heterogeneties. Comput Mech 34:510–531

    Article  Google Scholar 

  220. Chawla N, Ganesh VV, Wunsch B (2004) Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites. Scr Mater 51:161–165

    Article  Google Scholar 

  221. Lewis AC, Geltmacher AB (2006) Image-based modeling of the response of experimental 3D microstructures to mechanical loading. Scr Mater 55:81–85

    Article  Google Scholar 

  222. Maire E, Fazekas A, Salvo L, Dendievel R, Youssef S, Cloetens P, Letang JM (2003) X-ray tomography applied to the characterization of cellular materials: related finite element modeling problems. Compos Sci Technol 63:2431–2443

    Article  Google Scholar 

  223. Youssef S, Maire E, Gaertner R (2005) Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Mater 53:719–730

    Article  Google Scholar 

  224. Kenesei P, Borbély A, Biermann H (2004) Microstructure based three-dimensional finite element modeling of particulate reinforced metal-matrix composites. Mater Sci Eng A 387–389:852–856

    Article  Google Scholar 

  225. Larson DJ, Gault B, Geiser BP, De Geuser F, Vurpillot F (2013) Atom probe tomography spatial reconstruction: status and directions. Curr Opin Solid State Mater Sci 17:236–247

    Article  Google Scholar 

  226. Prakash A, Guénolé J, Wang J, Müller J, Spiecker E, Mills MJ, Povstugar I, Choi P, Raabe D, Bitzek E (2015) Atom probe informed simulations of dislocation-precipitate interactions reveal the importance of local interface curvature. Acta Mater 92:33–45

    Article  Google Scholar 

  227. Krug ME, Mao Z, Seidman DN, Dunand DC (2014) A dislocation dynamics model of the yield stress employing experimentally-derived precipitate fields in Al-Li-Sc alloys. Acta Mater 79:382–395

    Article  Google Scholar 

  228. Pareige C, Roussel M, Novy S, Kuksenko V, Olsson P, Domain C, Pareige P (2011) Kinetic study of phase transformation in a highly concentrated fe-cr alloy: Monte Carlo simulation versus experiments. Acta Mater 59:2404–2411

    Article  Google Scholar 

  229. Moody MP, Ceguerra AV, Breen AJ, Cui XY, Gault B, Stephenson LT, Marceau RKW, Powles RC, Ringer SP (2014) Atomically resolved tomography to directly inform simulations for structure–property relationships, Nat Commun 5

  230. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989

    Article  Google Scholar 

  231. Broderick S, Suh C, Nowers J, Vogel B, Mallapragada S, Narasimhan B, Rajan K (2008) Informatics for combinatorial materials science. JOM 60:56–59

    Article  Google Scholar 

  232. Rajan K, Rajagopalan A, Suh C (2002) Data mining and multivariate analysis in materials science. In: Gaune-Escard M (ed.) Molten salts: from fundamentals to applications, Springer Netherlands, no. 52 in NATO Science Series, pp 241–248

  233. Voorhees P, Spanos G, et al (2015) Modeling across scales: a roadmapping study for connecting materials models and simulations across length and time scales. The minerals, metals and materials society (TMS), Technical report

  234. Juul Jensen D, Godiksen RBN (2008) Neutron and synchrotron X-ray studies of recrystallization kinetics. Metall Mater Trans A 39A:3065–3069

    Article  Google Scholar 

  235. Babinsky K, De Kloe R, Clemens H, Primig S (2014) A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy 144:9–18

    Article  Google Scholar 

  236. Juan PA, Berbenni S, Capolungo L (2012) Prediction of internal stresses during growth of first-and second-generation twins in Mg and Mg alloys. Acta Mater 60:476–486

    Article  Google Scholar 

  237. Abdolvand H, Majkut M, Oddershede J, Wright JP, Daymond MR (2015) Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: part II-crystal plasticity finite element modeling. Acta Mater 93:235–245

    Article  Google Scholar 

  238. Woo C, Singh B (1992) Production bias due to clustering of point defects in irradiation-induced cascades. Philos Mag A 65:889–912

    Article  Google Scholar 

  239. Marsden W, Cebon D, Cope E (2014) Managing multi-scale material data for access within ICME environments. In: Arnold SM, Wong TT (eds) Models. Databases and simulation tools needed for realization of integrated computational materials engineering, ASM International, pp 82–90

Download references

Acknowledgements

This review article was written by the organizers of a symposium on the synergies between computational and experimental characterization across length scales at the 7th International Conference on Multiscale Materials Modeling, October 6–10, 2014 in Berkeley California USA. This symposium provided a forum for the Materials Science community to present and discuss the recent successes of predicting various physical phenomena and mechanisms in materials systems enabled by the collaboration between experimentalists and modelers. Some scientific research findings, successful collaborations, and tools leveraging the experiment-modeling synergy presented during this symposium are discussed in the present manuscript. Consequently, the authors thank all participants of this symposium for inspiration and motivation. RD and RAK are supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE–AC04–94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Dingreville.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dingreville, R., Karnesky, R.A., Puel, G. et al. Review of the synergies between computational modeling and experimental characterization of materials across length scales. J Mater Sci 51, 1178–1203 (2016). https://doi.org/10.1007/s10853-015-9551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9551-6

Keywords

Navigation