Skip to main content
Log in

Synthesis of brush-like ZnO nanowires and their enhanced gas-sensing properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, brush-like ZnO nanowires were synthesized by two-step method combining electrospinning and hydrothermal. The phase purity, morphology, and structure of the brush-like ZnO hierarchical structures were characterized, which exhibited the improved surface area, comparing with ZnO nanofibers. The gas-sensing experiments were carried out on brush-like ZnO nanowires and ZnO nanofibers sensors under optimum working temperature. The highest response of brush-like ZnO nanowires to 100 ppm toluene and CO can reach to 12.7 and 5.9, respectively, which was much higher than that of ZnO nanofibers. Moreover, the brush-like ZnO nanowires sensor also shows fast response/recovery time to toluene (9/4 s) and CO (6/2 s), low detection limit (1 ppm to toluene). The measured results demonstrate that brush-like ZnO nanowires are potential as a novel sensing material for practical gas-sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lee JH (2009) Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuators B 140:319–336

    Article  Google Scholar 

  2. Choi SJ, Choi CY, Kim SJ, Cho HJ, Hakim M, Jeon S, Kim D (2015) Highly efficient electronic sensitization of non-oxidized graphene flakes on controlled pore-loaded WO3 nanofibers for selective detection of H2S molecules. Sci Rep-uk. doi:10.1038/srep08067

    Google Scholar 

  3. Liang YC, Liao WK, Deng XS (2014) Synthesis and substantially enhanced gas sensing sensitivity of homogeneously nanoscale Pd- and Au-particle decorated ZnO nanostructures. J Alloy Compd 599:87–92

    Article  Google Scholar 

  4. Gardon M, Guilemany JM (2013) A review on fabrication, sensing mechanisms and performance of metal oxide gas sensors. J Mater Sci 24:1410–1421. doi:10.1007/s10854-012-0974-4

    Google Scholar 

  5. Hu J, Gao FQ, Sang SB, Li PW, Deng X, Zhang WD, Chen Y, Lian K (2015) Optimization of Pd content in ZnO microstructures for high-performance gas detection. J Mater Sci 50:1935–1942. doi:10.1007/s10853-014-8758-2

    Article  Google Scholar 

  6. Wang WC, Tian YT, Wang XC, He H, Xu YR, He C, Li XJ (2013) Ethanol sensing properties of porous ZnO spheres via hydrothermal route. J Mater Sci 48:3232–3238. doi:10.1007/s10853-012-7103-x

    Article  Google Scholar 

  7. Khoang ND, Hong HS, Trung DD, Duy NV, Hoa ND, Thinh DD, Hieu NV (2013) On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas. Sens Actuators B 181:529–536

    Article  Google Scholar 

  8. Zhang WH, Zhang WD, Zhou JF (2010) Solvent thermal synthesis and gas-sensing properties of Fe-doped ZnO. J Mater Sci 45:209–215. doi:10.1007/s10853-009-3920-y

    Article  Google Scholar 

  9. Luo J, Ma SY, Li FM, Li XB, Li WQ, Cheng L, Mao YZ, GZ DJ (2014) The mesoscopic structure of flower-like ZnO nanorods for acetone detection. Mater Lett 121:137–140

    Article  Google Scholar 

  10. Song N, Fan HQ, Tian HL (2015) PVP assisted in situ synthesis of functionalized graphene/ZnO (FGZnO) nanohybrids with enhanced gas-sensing property. J Mater Sci 50:2229–2238. doi:10.1007/s10853-014-8785-z

    Article  Google Scholar 

  11. Tarwal NL, Rajgure AV, Patil JY, Khandekar MS, Suryavanshi SS, Patil PS, Gang MG, Kim JH, Jang JH (2013) A selective ethanol gas sensor based on spray-derived Ag–ZnO thin films. J Mater Sci 48:7274–7282. doi:10.1007/s10853-013-7547-7

    Article  Google Scholar 

  12. Zhang ZY, Li XH, Wang CH, Wei LM, Liu YC, Shao CL (2009) ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors. J Chem Phys C 113:19397–19403

    Article  Google Scholar 

  13. Zhang XJ, Qiao GJ (2012) High performance ethanol sensing films fabricated from ZnO and In2O3 nanofibers with a double-layer structure. Appl Surf Sci 258:6643–6647

    Article  Google Scholar 

  14. Xu J, Yu YS, He XX, Sun JB, Liu FM, Lu GY (2012) Synthesis of hierarchical ZnO orientation-ordered film by chemical bath deposition and its gas sensing properties. Mater Lett 81:145–147

    Article  Google Scholar 

  15. Meng F, Yin J, Duan YQ, Yuan ZH, Bie LJ (2011) Co-precipitation synthesis and gas-sensing properties of ZnO hollow sphere with porous shell. Sens Actuators B 156:703–708

    Article  Google Scholar 

  16. Shafiei M, Yu J, Chen G, Lai PT, Motta N, Wlodarski W, Kalantar-zadeh K (2013) Improving the hydrogen gas sensing performance of Pt/MoO3 nanoplatelets using a nano thick layer of La2O3. Sens Actuators B 187:267–273

    Article  Google Scholar 

  17. Wei YL, Huang YF, Wu JH, Wang M, Guo CS, Dong Q (2013) Synthesis of hierarchically structured ZnO spheres by facile methods and their photocatalytic de NO x properties. J Hazard Mater 248:202–210

    Article  Google Scholar 

  18. Yao MS, Hu P, Cao YB, Xiang WC, Zhang X, Yuan FL, Chen YF (2013) Morphology-controlled ZnO spherical nanobelt-flower arrays and their sensing properties. Sens Actuators B 177:562–569

    Article  Google Scholar 

  19. Hieu HN, Yuong NM, Jung H, Jang DM, Kim D, Kim H, Hong S (2012) Optimization of a zinc oxide urchin-like structure for high-performance gas sensing. J Mater Chem 3:1127–1134

    Article  Google Scholar 

  20. Yu A, Qian JS, Pan H, Cui YM, Xu MG, Tu L, Chai QL, Zhou XF (2011) Micro-lotus constructed by Fe-doped ZnO hierarchically porous nanosheets: preparation, characterization and gas sensing property. Sens Actuators B 158:9–16

    Article  Google Scholar 

  21. Lou Z, Li F, Deng JN, Wang LL, Zhang T (2013) Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. Appl Mater Interface 5:12310–12316

    Article  Google Scholar 

  22. Zhang Y, Xu JQ, Xiang Q, Li H, Pan QY, Xu PC (2009) Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J Phys Chem C 113:3430–3435

    Article  Google Scholar 

  23. Rakshit T, Santra S, Manna I, Ray SK (2014) Enhanced sensitivity and selectivity of brush-like SnO2 nanowire/ZnO nanorod heterostructure based sensors for volatile organic compounds. RSC Adv 4:36749–36756

    Article  Google Scholar 

  24. Hu J, Sun YJ, Zhang WD, Gao FQ, Li PW, Jiang D, Chen Y (2014) Fabrication of hierarchical structures with ZnO nanowires on micropillars by UV soft imprinting and hydrothermal growth for a controlled morphology and wettability. Appl Surf Sci 317:545–551

    Article  Google Scholar 

  25. Khorami HA, Rad MK, Vaezi MR (2011) Synthesis of SnO2/ZnO composite nanofibers by electrospinning method and study of its ethanol sensing properties. Appl Surf Sci 257:7988–7992

    Article  Google Scholar 

  26. Mali SS, Kim H, Jang WY, Park HS, Patil PS, Hong CK (2013) Novel synthesis and characterization of mesoporous ZnO nanofibers by electrospinning technique. ACS Sustain Chem Eng 1:1207–1213

    Article  Google Scholar 

  27. Park SJ, Chase GG, Jeong K, Kim HY (2010) Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol–gel precursor. J Sol-Gel Sci Technol 54:188–194

    Article  Google Scholar 

  28. Kushwaha A, Aslam M (2014) ZnS shielded ZnO nanowire photoanodes for efficient water splitting. Electrochim Acta 130:222–231

    Article  Google Scholar 

  29. Guo T, Luo YD, Zhang YJ, Lin YH, Nan CW (2014) Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photoresponse current. Cryst Growth Des 14:2329–2334

    Article  Google Scholar 

  30. Liu L, Li SC, Zhang J, Wang LY, Zhang JB, Li HY, Liu Z, Han Y, Jiang XX, Zhang P (2011) Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sens Actuators B 155:782–788

    Article  Google Scholar 

  31. Tang W, Wang J (2015) Mechanism for toluene detection of flower-like ZnO sensors prepared by hydrothermal approach: charge transfer. Sens Actuators B 207:66–73

    Article  Google Scholar 

  32. Wang LW, Wang SR, Xu MJ, Hu XJ, Zhang HX, Wang YH, Huang WP (2013) A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene. Phys Chem Chem Phys 15:17179–17186

    Article  Google Scholar 

  33. Zeng Y, Zhang T, Wang LJ, Kang MH, Fan HT, Wang R, He Y (2009) Enhanced toluene sensing characteristics of TiO2-doped flowerlike ZnO nanostructures. Sens Actuators B 140:73–78

    Article  Google Scholar 

  34. Hjiri M, Mir LE, Leonardi SG, Pistone A, Mavilia L, Neri G (2014) Al-doped ZnO for highly sensitive CO gas sensors. Sens Actuators B 196:413–420

    Article  Google Scholar 

  35. Zhang HJ, Wu RF, Chen ZW, Liu G, Zhang ZN, Jiao Z (2012) Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties. CrystEngComm 14:1775–1782

    Article  Google Scholar 

  36. Huang JE, Ren HB, Sun PP, Gu CP, Sun YF, Liu JH (2013) Facile synthesis of porous ZnO nanowires consisting of ordered nanocrystallites and their enhanced gas-sensing property. Sens Actuators B 188:249–256

    Article  Google Scholar 

  37. Deng JN, Yu B, Lou Z, Wang LL, Wang R, Zhang T (2013) Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO-TiO2 heterojunctions nanofibers. Sens Actuators B 184:21–26

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant Nos. 51205274 and 51205276), the Shanxi Province Science Foundation for Youths (Grant No. 2013021017-2), the Shanxi Scholarship Council of China (Grant No. 2013-035), Doctoral Fund of Ministry of Education of China (Grant No. 20121402120008), China Postdoctoral Science Foundation (Grant No. 2013M530894), Graduate Education Innovation Fund (Grant No. 02100738), Technology Foundation for Selected Overseas Shanxi Scholar ([2014] 95), Science and Technology Major Project of the Shanxi Science and Technology Department (Grant No. 20121101004), and Key Disciplines Construction in Colleges and Universities of Shanxi (Grant No. [2012] 45).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Lian or Jie Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wei, Z., Zhang, W. et al. Synthesis of brush-like ZnO nanowires and their enhanced gas-sensing properties. J Mater Sci 51, 1428–1436 (2016). https://doi.org/10.1007/s10853-015-9462-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9462-6

Keywords

Navigation