Skip to main content
Log in

Effect of substrate temperature on interfacial bonding for cold spray of Ni onto Cu

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cold spray as a relatively new surface modification technique has great potential in the industry due to its ‘low working temperature’. The bonding quality between the cold-sprayed coating and the target substrate is one of the most important evaluation index for the coating performance. In this study, the interfacial bonding features between cold-sprayed Ni coatings and Cu are investigated to clarify the role of substrate temperature in the coating–substrate bonding. The finite element analysis model which can simulate the heat conduction through the coating–substrate interface is developed to model the particle deposition process on the substrate. The surface morphology and cross section of the experimentally deposited particles are observed by scanning electron microscope. The substrate surface oxidization behavior and coating–substrate interfacial atomic mixture are evaluated through the energy-dispersive spectroscopy line scans. The results indicate that heat conduction from the high-temperature substrate plays an important role in heating the interfacial region. The increased interfacial temperature significantly enhances the metallurgical bonding by improving the coating–substrate atomic mixture at the interface. Besides, the high-temperature substrate is also found to result in prominent metal jet and strong mechanical interlock due to the enhanced thermal softening effect. As a consequence, coating mass and coating–substrate bonding strength are promoted by using the high-temperature substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alkhimov AP, Kosareve VF, Papyrin AN (1990) A method of cold gas-dynamic spray deposition. Dokl Akad Nauk SSSR 315:1062–1065

    Google Scholar 

  2. Papyrin A (2001) Cold spray technology. Adv Mater Process 159:49

    Google Scholar 

  3. Grujicic M, Zhao CL, DeRosset WS, Helfritch D (2004) Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Mater Des 25:681–688. doi:10.1016/j.matdes.2004.03.008

    Article  Google Scholar 

  4. Schmidt T, Gärtner F, Assadi H, Kreye H (2006) Development of a generalized parameter window for cold spray deposition. Acta Mater 54:729–742. doi:10.1016/j.actamat.2005.10.005

    Article  Google Scholar 

  5. Dykhuizen RC, Smith MF, Gilmore DL, Neiser RA, Jiang X, Sampath S (1999) Impact of high velocity cold spray particles. J Therm Spray Technol 8:599–609

    Article  Google Scholar 

  6. Grujicic M, Saylor JR, Beasley DE, DeRosset WS, Helfritch D (2003) Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Appl Surf Sci 219:211–227. doi:10.1016/s0169-4332(03)00643-3

    Article  Google Scholar 

  7. Barradas S, Molins R, Jeandin M, Arrigoni M, Boustie M, Bolis C, Berthe L, Ducos M (2005) Application of laser shock adhesion testing to the study of the interlamellar strength and coating-substrate adhesion in cold-sprayed copper coating of aluminum. Surf Coat Technol 197:18–27. doi:10.1016/j.surfcoat.2004.08.222

    Article  Google Scholar 

  8. Klinkov SV, Kosarev VF, Rein M (2005) Cold spray deposition: significance of particle impact phenomena. Aerosp Sci Technol 9:582–591. doi:10.1016/j.ast.2005.03.005

    Article  Google Scholar 

  9. Price TS, Shipway PH, McCartney DG, Calla E, Zhang D (2007) A method for characterizing the degree of inter-particle bond formation in cold sprayed coatings. J Therm Spray Technol 16:566–570. doi:10.1007/s11666-007-9070-3

    Article  Google Scholar 

  10. Bae G, Xiong Y, Kumar S, Kang K, Lee C (2008) General aspects of interface bonding in kinetic sprayed coatings. Acta Mater 56:4858–4868. doi:10.1016/j.actamat.2008.06.003

    Article  Google Scholar 

  11. Bae G, Kumar S, Yoon S, Kang K, Na H, Kim H, Lee C (2009) Bonding features and associated mechanisms in kinetic sprayed titanium coatings. Acta Mater 57:5654–5666. doi:10.1016/j.actamat.2009.07.061

    Article  Google Scholar 

  12. Hussain T, McCartney DG, Shipway PH, Zhang D (2009) Bonding mechanisms in cold spraying: the contributions of metallurgical and mechanical components. J Therm Spray Technol 18:364–379. doi:10.1007/s11666-009-9298-1

    Article  Google Scholar 

  13. Guetta S, Berger MH, Borit F, Guipont V, Jeandin M, Boustie M, Ichikawa Y, Sakaguchi K, Ogaw K (2009) Influence of particle velocity on adhesion of cold-sprayed splats. J Therm Spray Technol 18:331–342. doi:10.1007/s11666-009-9327-0

    Article  Google Scholar 

  14. Yin S, Wang X-F, Li W-Y, Xu B-P (2009) Numerical investigation on effects of interactions between particles on coating formation in cold spraying. J Therm Spray Technol 18:686–693. doi:10.1007/s11666-009-9390-6

    Article  Google Scholar 

  15. Assadi H, Gärtner F, Stoltenhoff T, Kreye H (2003) Bonding mechanism in cold gas spraying. Acta Mater 51:4379–4394. doi:10.1016/s1359-6454(03)00274-x

    Article  Google Scholar 

  16. Kang K, Won J, Bae G, Ha S, Lee C (2012) Interfacial bonding and microstructural evolution of Al in kinetic spraying. J Mater Sci 47:4649–4659. doi:10.1007/s10853-012-6332-3

    Article  Google Scholar 

  17. Dewar MP, McDonald AG, Gerlich AP (2011) Interfacial heating during low-pressure cold-gas dynamic spraying of aluminum coatings. J Mater Sci 47:184–198. doi:10.1007/s10853-011-5786-z

    Article  Google Scholar 

  18. Yin S, Wang X, Li W, Liao H, Jie H (2012) Deformation behavior of the oxide film on the surface of cold sprayed powder particle. Appl Surf Sci 259:294–300. doi:10.1016/j.apsusc.2012.07.036

    Article  Google Scholar 

  19. Yin S, Xie Y, Suo X, Liao H, Wang X (2015) Interfacial bonding features of Ni coating on Al substrate with different surface pretreatments in cold spray. Mater Lett 138:143–147. doi:10.1016/j.matlet.2014.10.016

    Article  Google Scholar 

  20. King PC, Bae G, Zahiri SH, Jahedi M, Lee C (2009) An experimental and finite element study of cold spray copper impact onto two aluminum substrates. J Therm Spray Technol 19:620–634. doi:10.1007/s11666-009-9454-7

    Article  Google Scholar 

  21. Xiong Y, Bae G, Xiong X, Lee C (2009) The effects of successive impacts and cold welds on the deposition onset of cold spray coatings. J Therm Spray Technol 19:575–585. doi:10.1007/s11666-009-9455-6

    Article  Google Scholar 

  22. Calvo FA, Urena A, Desalazar JMG, Molleda F (1998) Special features of the formation of the diffusion bonded joints between copper and aluminium. J Mater Sci 23:2273–2280. doi:10.1007/BF01115800

    Article  Google Scholar 

  23. Manna I, Majumdar JD (1993) Enhanced kinetics of diffusion coating of aluminum on copper by boundary diffusion. J Mater Sci Lett 12:920–922

    Article  Google Scholar 

  24. Schmidt T, Assadi H, Gärtner F, Richter H, Stoltenhoff T, Kreye H, Klassen T (2009) From particle acceleration to impact and bonding in cold spraying. J Therm Spray Technol 18:794–808. doi:10.1007/s11666-009-9357-7

    Article  Google Scholar 

  25. Pattison J, Celotto S, Khan A, O’Neill W (2008) Standoff distance and bow shock phenomena in the Cold Spray process. Surf Coat Technol 202:1443–1454. doi:10.1016/j.surfcoat.2007.06.065

    Article  Google Scholar 

  26. Yin S, Wang X, Suo X, Liao H, Guo Z, Li W, Coddet C (2013) Deposition behavior of thermally softened copper particles in cold spraying. Acta Mater 61:5105–5118. doi:10.1016/j.actamat.2013.04.041

    Article  Google Scholar 

  27. Kim K, Watanabe M, Kuroda S (2009) Thermal softening effect on the deposition efficiency and microstructure of warm sprayed metallic powder. Scr Mater 60:710–713. doi:10.1016/j.scriptamat.2008.12.050

    Article  Google Scholar 

  28. Kim K, Watanabe M, Kuroda S (2010) Bonding mechanisms of thermally softened metallic powder particles and substrates impacted at high velocity. Surf Coat Technol 204:2175–2180. doi:10.1016/j.surfcoat.2009.12.001

    Article  Google Scholar 

  29. Kim K, Kuroda S, Watanabe M (2010) Microstructural development and deposition behavior of titanium powder particles in warm spraying process: from single splat to coating. J Therm Spray Technol 19:1244–1254. doi:10.1007/s11666-010-9532-x

    Article  Google Scholar 

  30. Fukumoto M, Wada H, Tanabe K, Yamada M, Yamaguchi E, Niwa A, Sugimoto M, Izawa M (2007) Effect of substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spray process. J Therm Spray Technol 16:643–650. doi:10.1007/s11666-007-9121-9

    Article  Google Scholar 

  31. Yin S, Suo X, Guo Z, Liao H, Wang X (2014) Deposition features of cold sprayed copper particles on preheated substrate. Surf Coat Technol 25:252–256. doi:10.1016/j.surfcoat.2014.11.009

    Google Scholar 

  32. Suo XK, Yu M, Li WY, Planche MP, Liao HL (2012) Effect of substrate preheating on bonding strength of cold-sprayed Mg coatings. J Therm Spray Technol 21:1091–1098. doi:10.1007/s11666-012-9803-9

    Article  Google Scholar 

  33. Watanabe Y, Yoshida C, Atsumi K, Yamada M, Fukumoto M (2014) Influence of substrate temperature on adhesion strength of cold-sprayed coatings. J Therm Spray Technol 24:86–91. doi:10.1007/s11666-014-0165-3

    Google Scholar 

  34. Ernst KR, Braeutigam J, Gaertner F, Klassen T (2012) Effect of substrate temperature on cold-gas-sprayed coatings on ceramic substrates. J Therm Spray Technol 22:422–432. doi:10.1007/s11666-012-9871-x

    Article  Google Scholar 

  35. Legoux JG, Irissou E, Moreau C (2007) Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc and tin coatings. J Therm Spray Technol 16:619–626. doi:10.1007/s11666-007-9091-y

    Article  Google Scholar 

  36. Bray M, Cockburn A, O’Neill W (2009) The laser-assisted cold spray process and deposit characterisation. Surf Coat Technol 203:2851–2857. doi:10.1016/j.surfcoat.2009.02.135

    Article  Google Scholar 

  37. Wang FF, Li WY, Yu M, Liao HL (2013) Prediction of critical velocity during cold spraying based on a coupled thermomechanical Eulerian model. J Therm Spray Technol 23:60–67. doi:10.1007/s11666-013-0009-6

    Article  Google Scholar 

  38. (2011) Hibbitt, Karlsson and Soerensen, Pawtucket

  39. Yin S, Wang X-F, Xu B-P, Li W-Y (2010) Examination on the calculation method for modeling the multi-particle impact process in cold spraying. J Therm Spray Technol 19:1032–1041. doi:10.1007/s11666-010-9489-9

    Article  Google Scholar 

  40. GR Johnson, WH Cook (1983) A constitutive model and data for metals subjected to largestrains, high strain rates, and high temperatures. In: Proceedings of the 7th international symposium. on ballistics, The Hague, The Netherlands

  41. Zou Y, Qin W, Irissou E, Legoux J-G, Yue S, Szpunar JA (2009) Dynamic recrystallization in the particle/particle interfacial region of cold-sprayed nickel coating: electron backscatter diffraction characterization. Scr Mater 61:899–902. doi:10.1016/j.scriptamat.2009.07.020

    Article  Google Scholar 

  42. Wang Q, Qiu D, Xiong Y, Birbilis N, Zhang M-X (2014) High resolution microstructure characterization of the interface between cold sprayed Al coating and Mg alloy substrate. Appl Surf Sci 289:366–369. doi:10.1016/j.apsusc.2013.10.168

    Article  Google Scholar 

  43. Bae G, Jang J-I, Lee C (2012) Correlation of particle impact conditions with bonding, nanocrystal formation and mechanical properties in kinetic sprayed nickel. Acta Mater 60:3524–3535. doi:10.1016/j.actamat.2012.03.001

    Article  Google Scholar 

  44. Johnson BC, Bauer CL, Jordan AG (1986) Mechanisms of interdiffusion in copper/nickel thin film couples. J Appl Phys 59:1147–1155

    Article  Google Scholar 

  45. Lee H, Shin H, Ko K (2009) Effects of gas pressure of cold spray on the formation of Al-based intermetallic compound. J Therm Spray Technol 19:102–109. doi:10.1007/s11666-009-9407-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support by Marie Curie FP7-IPACT-268696 (EU) and the China State Key Lab of Advanced Metals and Materials (2013-ZD07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Suo, X., Xie, Y. et al. Effect of substrate temperature on interfacial bonding for cold spray of Ni onto Cu. J Mater Sci 50, 7448–7457 (2015). https://doi.org/10.1007/s10853-015-9304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9304-6

Keywords

Navigation