Skip to main content
Log in

First-principles study of Si and Mg segregation in grain boundaries in Al and Cu: application of local-energy decomposition

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Segregation of Si and Mg at grain boundaries (GBs) in Al and Cu has been investigated using density-functional theory calculations combined with recently developed local-energy and local-stress schemes. The physics behind the impurity-segregation energy is effectively analyzed by the local-energy decomposition. For the \(\Sigma \)9 tilt and \(\Sigma \)5 twist GBs in Al and Cu, Si shows large segregation-energy gains only at tighter sites, where local configuration of remarkably short Si–Al or Si–Cu bonds with high charge densities of covalent-bonding features are formed, leading to the local-energy stabilization as the final-state effects. On the other hand, Mg shows large gains only at looser sites. For Mg in the Cu GBs, the formation of stable Mg–Cu bonds or Mg states at looser sites is the origin of the preferential segregation as the final-state effects. For Mg in the Al GBs, however, the local energies of Mg–Al bonds are not so stable at looser sites, while the instability of Al atoms at looser sites in pure GBs before substitution is the origin of the preferential segregation as the initial-state effects. The behaviors of Si and Mg in Al GBs are dominated by the difference in local sp bonding nature among Mg, Al and Si, while Si–Cu and Mg–Cu \(sp-d\) hybridization interactions dominate the behaviors of Si and Mg in Cu GBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Herbig M, Raabe D, Li YJ, Choi P, Zaefferer S, Goto S (2014) Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112:126103-1–126103-5

    Article  Google Scholar 

  2. Lejček P (2010) Grain boundary segregation in metals. Springer, Berlin

    Google Scholar 

  3. Edalati K, Fujioka T, Horita Z (2008) Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Mater Sci Eng A 497:168–173

    Article  Google Scholar 

  4. Ito Y, Horita Z (2009) Microstructural evolution in pure aluminum processed by high-pressure torsion. Mater Sci Eng A 503:32–36

    Article  Google Scholar 

  5. Ogata S, Li J, Yip S (2002) Ideal pure shear strength of aluminum and copper. Science 298:807–811

    Article  Google Scholar 

  6. Carling K, Wahnström G, Mattsson TR, Mattsson AE, Sandberg N, Grimvall G (2000) Vacancies in metals: from first-principles calculations to experimental data. Phys Rev Lett 85:3862–3865

    Article  Google Scholar 

  7. Uesugi T, Kohyama M, Higashi K (2003) Ab initio study on divacancy binding energies in aluminum and magnesium. Phys Rev B 68:184103-1–184103-5

    Article  Google Scholar 

  8. Wang RZ, Kohyama M, Tanaka S, Tamura T, Ishibashi S (2009) First-principles study of the stability and interfacial bonding of tilt and twist grain boundaries in Al and Cu. Mater Trans 50:11–18

    Article  Google Scholar 

  9. Wang RZ, Tanaka S, Kohyama M (2012) First-principles tensile tests of tilt and twist grain boundaries in Al. Mater Trans 53:140–146

    Article  Google Scholar 

  10. Shiihara Y, Kohyama M, Ishibashi S (2010) Ab initio local stress and its application to Al (111) surfaces. Phys Rev B 81:075441-1–075441-1

    Article  Google Scholar 

  11. Muller DA, Mills MJ (1999) Electron microscopy: probing the atomic structure and chemistry of grain boundaries, interfaces and defects. Mater Sci Eng A 260:12–28

    Article  Google Scholar 

  12. Hu JR, Chang SC, Chen FR, Kai JJ (2002) HRTEM investigation of the multiplicity of \(\Sigma \)=9[\(0\overline{1}1\)]/(122) symmetric tilt grain boundary in Cu. Mater Chem Phys 74:313–319

    Article  Google Scholar 

  13. Wang H, Kohyama M, Tanaka S, Shiihara Y (2013) Ab initio local energy and local stress: application to tilt and twist grain boundaries in Cu and Al. J Phys Condens Matter 25:305006-1–305006-13

    Google Scholar 

  14. Na SH, Yang MS, Nam SW (1995) Effects of stress amplitude and internal stress on the grain boundary deformation behavior under high temperature creep in an Al-2.9%Mg alloy. Scr Metall 32:627–632

    Article  Google Scholar 

  15. Song RG, Tseng MK, Zhang BJ, Liu J, Jin ZH, Shin KS (1996) Grain boundary segregation and hydrogen-induced fracture in 7050 aluminum alloy. Acta Mater 44:3241–3248

    Article  Google Scholar 

  16. Horikawa K, Kuramoto S, Kanno M (2001) Intergranular fracture caused by trace impurities in an Al-5.5 mol% Mg alloy. Acta Mater 49:3981–3989

    Article  Google Scholar 

  17. Terada D, Masui T, Kamikawa N, Tsuji N (2008) Microstructure and mechanical properties of Al-0.5 at.% X (=Si, Ag, Mg) alloys highly deformed by ARB process. Mater Sci Forum 584–586:547–552

    Article  Google Scholar 

  18. Liu XY, Adams JB (1998) Grain-boundary segregation in Al-10%Mg alloys at hot working temperature. Acta Mater 46:3467–3476

    Article  Google Scholar 

  19. Namilae S, Chandra N, Nieh TG (2002) Atomistic simulation of grain boundary sliding in pure and magnesium doped aluminum bicrystals. Scr Mater 46:49–54

    Article  Google Scholar 

  20. Liu X, Wang X, Wang J, Zhang H (2005) First-principles investigation of Mg segregation at \(\Sigma \) = 11(113) grain boundaries in Al. J Phys Condens Matter 17:4301–4308

    Article  Google Scholar 

  21. Uesugi T, Higashi K Private communication

  22. Razumovskiy VI, Ruban AV, Razumovskii IM, Lozovoi AY, Butrim VN, Vekilov YuKh (2011) The effect of alloying elements on grain boundary and bulk cohesion in aluminum alloys: an ab initio study. Scr Mater 65:926–929

    Article  Google Scholar 

  23. Thomson DI, Heine V, Payne MC, Marzari N, Finnis MW (2000) Insight into gallium behavior in aluminum grain boundaries from calculation on \(\Sigma \) = 11(113) boundary. Acta Mater 48:3623–3632

    Article  Google Scholar 

  24. Zhang Y, Lu GH, Hu X, Wang T, Kohyama M, Yamamoto R (2007) First-principles computational tensile test on a Na-segregated Al grain boundary with an Si additive and an intergranular embrittlement suppression mechanism. J Phys Condens Matter 19:456225-1–456225-8

    Google Scholar 

  25. Lu GH, Suzuki A, Ito A, Kohyama M, Yamamoto R (2000) Comparison of effects of sodium and silicon impurities on aluminium grain boundaries by first-principles calculation, Modell Simul Mater Sci Eng 8:727–736; (2003) Effects of Impurities on an Al Grain Boundary. Mater Trans 44:337–343

    Article  Google Scholar 

  26. Kunimine T, Fujii T, Onaka S, Tsuji N, Kato M (2011) Effects of Si addition on mechanical properties of copper severely deformed by accumulative roll-bonding. J Mater Sci 46:4290–4295. doi:10.1007/s10853-010-5235-4

    Article  Google Scholar 

  27. Nishikawa K, Semboshi S, Konno TJ (2007) Transmission electron microscopy observations on Cu-Mg alloy systems. Solid State Phenom 127:103–108

    Article  Google Scholar 

  28. Lozovoi AY, Paxton AT, Finnis MW (2006) Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first-principles calculations for copper. Phys Rev B 74:155416-1–155416-13

    Article  Google Scholar 

  29. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  30. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  32. Kr Bhattacharya S, Tanaka S, Shiihara Y, Kohyama M (2013) Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress. J Phys Condens Matter 25:135004-1–135004-14

    Google Scholar 

  33. Bhattacharya SKR, Tanaka S, Shiihara Y, Kohyama M (2014) Ab initio perspective of the \(\langle 110\rangle \) symmetrical tilt grain boundaries in bcc Fe: application of local energy and local stress. J Mater Sci 49:3980–3995. doi:10.1007/s10853-014-8038-1

    Article  Google Scholar 

  34. Kr Bhattacharya S, Kohyama M, Tanaka S, Shiihara Y (2014) Si segregation at Fe grain boundaries analyzed by ab initio local energy and local stress. J Phys Condens Matter 26:355005-1–355005-18

    Google Scholar 

  35. Chetty N, Martin RM (1992) First-principles energy density and its applications to selected polar surfaces. Phys Rev B 45:6074–6088

    Article  Google Scholar 

  36. Chetty N, Martin RM (1992) GaAs (111) and (\(\overline{1}\overline{1}\overline{1}\)) surfaces and the GaAs/AlAs (111) heterojunction studied using a local energy density. Phys Rev B 45:6089

    Article  Google Scholar 

  37. Filippetti A, Fiorentini V (2000) Theory and applications of the stress density. Phys Rev B 61:8433–8442

    Article  Google Scholar 

  38. Nielsen OH, Martin RM (1985) Quantum-mechanical theory of stress and force. Phys Rev B 32:3780–3791

    Article  Google Scholar 

  39. Bader RF (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  40. Yu M, Trinkle DR (2011) Accurate and efficient algorithm for Bader charge integration. J Chem Phys 134:064111-1–064111-8

    Google Scholar 

  41. Yu M, Trinkle DR, Martin RM (2011) Energy density in density functional theory: application to crystalline defects and surfaces. Phys Rev B 83:115113-1–115113-10

    Google Scholar 

  42. Ishibashi S, Tamura T, Tanaka S, Kohyama M, Terakura K. http://qmas.jp. Accessed 17 Nov 2013

  43. Ishibashi S, Tamura T, Tanaka S, Kohyama M, Terakura K (2007) Ab initio calculations of electric-field-induced stress profiles for diamond/c-BN (110) superlattices. Phys Rev B 76:153310-1–153310-4

    Article  Google Scholar 

  44. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New York

    Google Scholar 

  45. Becke AD (1988) A multicenter numerical Integration scheme for polyatomic molecules. J Comput Phys 88:2547–2553

    Google Scholar 

  46. Turner DE, Zhu ZZ, Chan CT, Ho KM (1997) Energetics of vacancy and substitutional impurities in aluminum bulk and clusters. Phys Rev B 55:13842–13852

    Article  Google Scholar 

  47. Chetty N, Weinert M, Rahman TS, Davenport JW (1995) Vacancies and impurities in aluminum and magnesium. Phys Rev B 52:6313–6326

    Article  Google Scholar 

  48. Ullmaier H (ed) (1991) Atomic defects in metals. Springer, Berlin

    Google Scholar 

  49. Cruz CA, Chantrenne P, Veiga RGA, Perez M, Kleber X (2013) Modified embedded-atom method interatomic potential and interfacial thermal conductance of Si-Cu systems: A molecular dynamics study. J Appl Phys 113:023710-1–023710-9

    Article  Google Scholar 

  50. Chen W, Sun J (2006) The electronic structure and mechanical properties of MgCu\(_2\) Laves phase compound. Physica B 382:279–284

    Article  Google Scholar 

  51. Ganeshan S, Shang SL, Zhang H, Wang Y, Mantina M, Liu ZK (2009) Elastic constants of binary Mg compounds from first-principles calculations. Intermetallics 17:313–318

    Article  Google Scholar 

  52. Mao P, Yu B, Liu Z, Wang F, Ju Y (2013) First-principles calculations of structural, elastic and electronic properties of AB\(_2\) type intermetallics in Mg-Zn-Ca-Cu alloy. J Mag Alloys 1:256–262

    Article  Google Scholar 

  53. Lejček P, Šob M, Paidar V, Vitek V (2013) Why calculated energies of grain boundary segregation are unreliable when segregant solubility is low. Scr Mater 68:547–550

    Article  Google Scholar 

  54. Seah MP, Hondros ED (1973) Grain boundary segregation. Proc R Soc Lond A 335:191–212

    Article  Google Scholar 

  55. McLean D (1957) Grain boundaries in metals. Oxford University Press, London

    Google Scholar 

  56. Rice JR, Wang JS (1989) Embrittlement of interfaces by solute segregation. Mater Sci Eng A 107:23–40

    Article  Google Scholar 

  57. Sato Y, Roh J-Y, Ikuhara Y (2013) Grain-boundary structural transformation induced by geometry and chemistry. Phys Rev B 87:140101-1–140101-4

    Google Scholar 

Download references

Acknowledgements

We thank Dr. S. Ishibashi, Dr. S. Kr. Bhattacharya, Dr. V. Sharma, Prof. R.-Z. Wang, and Prof. S. Ogata for fruitful discussions. The present study was supported by the Grand-in-Aid for Scientific Research on Innovative Areas, “Bulk Nanostructured Metals” (KAKENHI 22102003), the Grand-in-Aid for Scientific Research (KAKENHI 23710107), and the Elements Strategy Initiative for Structural Materials (ESISM) through MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Kohyama, M., Tanaka, S. et al. First-principles study of Si and Mg segregation in grain boundaries in Al and Cu: application of local-energy decomposition. J Mater Sci 50, 6864–6881 (2015). https://doi.org/10.1007/s10853-015-9294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9294-4

Keywords

Navigation