Skip to main content
Log in

Dynamic fracture and local failure mechanisms in heterogeneous RDX-Estane energetic aggregates

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Local failure initiation mechanisms, such as the nucleation and propagation of multiple cracks, have been investigated in energetic aggregates with a viscoelastic estane binder and crystalline RDX grains that have been subjected to dynamic thermo-mechanical loading conditions. A dislocation density-based crystalline plasticity, finite viscoelasticity, dynamic fracture nucleation and propagation, and non-linear finite-element formulations were used to study crack nucleation and propagation due to dynamic, tensile mechanical strain-rate loading conditions in RDX-Estane energetic aggregates. The interrelated effects of grain boundary (GB) misorientations, porosity, grain morphology, dislocation densities, polymer binder relaxation, and crystal-binder interactions were coupled with adiabatic plasticity heating, thermal decomposition, and viscous dissipation heating to fundamentally understand and predict aggregate behavior and local failure initiation mechanisms. The predictions indicate that local failure occurs when cracks nucleate at the peripheries of internal porosity and subsequently propagate toward the viscoelastic estane binder where crack arrest occurs at the interface, which results in large inelastic deformations and temperature accumulations at the interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Walley S, Field J, Greenaway M (2006) Crystal sensitivities of energetic materials. Mater Sci Technol 22:402–413

    Article  Google Scholar 

  2. Armstrong R, Elban W (2006) Materials science and technology aspects of energetic (explosive) materials. Mater Sci Technol 22:381–395

    Article  Google Scholar 

  3. Baer M (2002) Modeling heterogeneous energetic materials at the mesoscale. Thermochim Acta 384:351–367

    Article  Google Scholar 

  4. Borne L (1993) Influence of Intragranular cavities of RDX particale batches on the sensitivity of cast wax bonded explosives. In: 10th Symposium on Detonation, 33395–33412

  5. Borne L, Mory J, Schlesser F (2008) Reduced Sensitivity RDX (RS-RDX) in pressed formulations: respective effects of intra-granular pores, extra-granular pores and pore sizes. Propellants Explos Pyrotech 33:37–43

    Article  Google Scholar 

  6. Bruckman H, Guillet J (1968) Theoretical calculations of hot-spot initiation in explosives. Can J Chem 46:3221–3228

    Article  Google Scholar 

  7. Cardao P, Gois J, Campos J (2000) Thermal decomposition of energetic materials. AIP Conf Proc 505:853–856

    Google Scholar 

  8. Field J, Bourne N, Palmer S, Walley S, Sharma J, Beard B (1992) Hot-spot ignition mechanisms for explosives and propellants [and Discussion]. Philos Trans R Soc Lond Ser A 339:269–283

    Article  Google Scholar 

  9. Armstrong R, Coffey C, DeVost V, Elban W (1990) Crystal size dependence for impact initiation of cyclotrimethylenetrinitramine explosive. J Appl Phys 68:979–984

    Article  Google Scholar 

  10. Borne L, Patedoye J, Spyckerelle C (1999) Quantitative characterization of internal defects in RDX crystals. Propellants Explos Pyrotech 24:255–259

    Article  Google Scholar 

  11. Czerski H, Proud W (2007) Relationship between the morphology of granular cyclotrimethylene-trinitramine and its shock sensitivity. J Appl Phys 102:113–115

    Article  Google Scholar 

  12. Hooks D, Ramos K, Bahr D (2007) The effect of cracks and voids on the dynamic yield of Rdx single crystals. AIP Conf Proc 955:789–794

    Google Scholar 

  13. Qiu H, Stepanov V, Di Stasio A, Chou T, Lee W (2011) RDX-based nanocomposite microparticles for significantly reduced shock sensitivity. J Hazard Mater 185:489–493

    Article  Google Scholar 

  14. Bouma R, Duvalois W, Heijden A (2013) Microscopic characterization of defect structure in RDX crystals. J Microsc 252:263–274

    Article  Google Scholar 

  15. Bouma RHB, van der Heijden AEDM, Sewell TD, Thompson DL (2011) Simulations of deformation processes in energetic materials. In: Awrejcewicz J (ed) Numerical simulations of physical and engineering processes. http://www.intechopen.com/books/numerical-simulations-of-physical-and-engineering-processes/simulationsof-deformationprocesses-in-energetic-materials

  16. Palmer S, Field J (1982) The Deformation and Fracture of beta-HMX. Proc R Soc Lond 383:399–407

    Article  Google Scholar 

  17. Sharma J, Armstrong R, Elban W, Coffey C, Sandusky H (2001) Nanofractography of shocked RDX explosive crystals with atomic force microscopy. Appl Phys Lett 78:457–459

    Article  Google Scholar 

  18. Smith D, Thorpe B (1973) Fracture in the high explosive RDX/TNT. J Mater Sci 8:757–759

    Article  Google Scholar 

  19. Wang Y, Li J, Hamza A, Barbee T (2007) Ductile crystalline-amorphous nanolaminates. Proc Natl Acad Sci USA 104:11155–11160

    Article  Google Scholar 

  20. Zhang J, Liu G, Sun J (2014) Self-toughening crystalline Cu/amorphous Cu–Zr nanolaminates: deformation-induced devitrification. Acta Mater 66:22–31

    Article  Google Scholar 

  21. Voevodin A, Zabinski J (1998) Load-adaptive crystalline–amorphous nanocomposites. J Mater Sci 33:319–327

    Article  Google Scholar 

  22. Shanthraj P, Zikry M (2011) Dislocation density evolution and interactions in crystalline materials. Acta Mater 59:7695–7702

    Article  Google Scholar 

  23. Zikry M (1994) An accurate and stable algorithm for high strain-rate finite strain plasticity. Comput Struct 50:337–350

    Article  Google Scholar 

  24. Ashmawi W, Zikry M (2002) Prediction of grain-boundary interfacial mechanisms in polycrystalline materials. J Eng Mater Technol 124:88–96

    Article  Google Scholar 

  25. Shanthraj P, Zikry M (2012) Dislocation-density mechanisms for void interactions in crystalline materials. Int J Plast 34:154–163

    Article  Google Scholar 

  26. Hutchinson J (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc Lond 348:101–127

    Article  Google Scholar 

  27. Pan J, Rice J (1983) Rate sensitivity of plastic flow and implications for yield-surface vertices. Int J Solids Struct 19:973–987

    Article  Google Scholar 

  28. Franciosi P, Berveiller M, Zaoui A (1980) Latent hardening in copper and aluminium single crystals. Acta Metall 28:273–283

    Article  Google Scholar 

  29. Devincre B, Hoc T, Kubin L (2008) Dislocation mean free paths and strain hardening of crystals. Science 320:1745–1748

    Article  Google Scholar 

  30. Zikry M, Kao M (1996) Dislocation based multiple-slip crystalline constitutive formulation for finite-strain plasticity. Scr Mater 34:1115–1121

    Article  Google Scholar 

  31. Kaliske M, Rothert H (1997) Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput Mech 19:228–239

    Article  Google Scholar 

  32. Mas E, Clements B, Blumenthal B et al (2002) A viscoelastic model for PBX binder. AIP Conf Proc 620:661–664

    Google Scholar 

  33. Kendall M, Siviour C (2014) Rate dependence of poly (vinyl chloride), the effects of plasticizer and time–temperature superposition. Proc Royal Soc A 470:2167–2182

    Article  Google Scholar 

  34. Antolovich S, Armstrong R (2014) Plastic strain localization in metals: origins and consequences. Prog Mater Sci 59:1–160

    Article  Google Scholar 

  35. Johnson A, Chen T (2005) Approximating thermo-viscoelastic heating of largely strained solid rubber components. Comput Methods Appl Mech Eng 194:313–325

    Article  Google Scholar 

  36. Shanthraj P, Zikry M (2013) Microstructurally induced fracture nucleation and propagation in martensitic steel. J Mech Phys Solids 61:1091–1105

    Article  Google Scholar 

  37. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193:3523–3540

    Article  Google Scholar 

  38. Song J, Areias P, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67:868–893

    Article  Google Scholar 

  39. Hooks D, Ramos K, Martinez A (2006) Elastic-plastic shock wave profiles in oriented single crystals of cyclotrimethylene trinitramine (RDX) at 2.25 GPa. J Appl Phys 100:024908–024917

    Article  Google Scholar 

  40. Gallagher H, Halfpenny P, Miller J et al (1992) Dislocation slip systems in pentaerythritol tetranitrate (PETN) and cyclotrimethylene trinitramine (RDX). Philos Trans 339:293–303

    Article  Google Scholar 

  41. Annapragada S, Sun D, Garimella S (2007) Prediction of effective thermo-mechanical properties of particulate composites. Comput Mater Sci 40:255–266

    Article  Google Scholar 

  42. Barua A, Zhou M (2011) A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives. Model Simul Mater Sci Eng 19:055001

    Article  Google Scholar 

  43. Stoltz C, Mason B, Hooper J (2010) Neutron scattering study of internal void structure in RDX. J Appl Phys 107:103527–103534

    Article  Google Scholar 

  44. LaBarbera D, Zikry M (2013) The effects of microstructural defects on hot spot formation in cyclotrimethylenetrinitramine-polychlorotrifluoroethylene energetic aggregates. J Appl Phys 113:243502–243514

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Office of Naval Research as a Multi-Disciplinary University Research Initiative on Sound and Electromagnetic Interacting Waves under Grant Number N00014-10-1-0958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zikry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaBarbera, D.A., Zikry, M.A. Dynamic fracture and local failure mechanisms in heterogeneous RDX-Estane energetic aggregates. J Mater Sci 50, 5549–5561 (2015). https://doi.org/10.1007/s10853-015-9102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9102-1

Keywords

Navigation