Skip to main content
Log in

Thermal expansion behavior of SrSiO3 and Sr2SiO4 determined by high-temperature X-ray diffraction and dilatometry

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Strontium silicates are widely known as high thermal expansion materials, especially from glass ceramic sealing applications. However, the thermal expansion behavior of the pure crystalline phases is still unknown. Hence, SrSiO3 and Sr2SiO4 were characterized with dilatometry and high-temperature X-ray diffraction. The measured coefficients of thermal expansion (CTE) of Sr2SiO4 are strongly anisotropic and depending on the crystallographic direction vary between 3.9 and 16.6 × 10−6 K−1. SrSiO3 has a somewhat higher isotropy of thermal expansion than Sr2SiO4. The CTE in the respective crystallographic directions differs by only 1.9 × 10−6 K−1. The mean CTE is between 10.9 and 12.8 × 10−6 K−1 for SrSiO3 and Sr2SiO4, respectively. A comparison of the Sr-phases with Ba- and Ca-phases with the same stoichiometry is given with respect to the crystal structures and the CTE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tiwari B, Dixit A, Kothiyal GP (2011) Study of glasses/glass-ceramics in the SrO–ZnO–SiO2 system as high temperature sealant for SOFC applications. Int J Hydrogen Energy 36:15002–15008

    Article  Google Scholar 

  2. Kaur G, Pandey OP, Singh K (2012) Interfacial study between high temperature SiO2–B2O3–AO–La2O3 (A = Sr, Ba) glass seals and Crofer 22APU for solid oxide fuel cell applications. Int J Hydrogen Energy 37:6862–6874

    Article  Google Scholar 

  3. Ojha PK, Rath SK, Chongdar TK et al (2011) Physical and thermal behaviour of Sr–La–Al–B–Si based SOFC glass sealants as function of SrO content and B2O3/SiO2 ratio in the matrix. J Power Sources 196:4594–4598

    Article  Google Scholar 

  4. Mahapatra MK, Lu K (2010) Glass-based seals for solid oxide fuel and electrolyzer cells—a review. Mater Sci Eng R 67:65–85

    Article  Google Scholar 

  5. Kaur G, Singh K, Pandey OP et al (2013) Structural and thermal properties of glass composite seals and their chemical compatibility with Crofer 22APU for solid oxide fuel cells applications. J Power Sources 240:458–470

    Article  Google Scholar 

  6. Fergus JW (2005) Sealants for solid oxide fuel cells. J Power Sources 147:46–57

    Article  Google Scholar 

  7. Thieme C, Rüssel C (2014) Cobalt containing crystallizing glass seals for solid oxide fuel cells—a new strategy for strong adherence to metals and high thermal expansion. J Power Sources 258:182–188

    Article  Google Scholar 

  8. Chu CN, Saka N, Suh NP (1987) Negative thermal expansion ceramics: a review. Mater Sci Eng 95:303–308

    Article  Google Scholar 

  9. Nishi F (1997) Strontium Metasilicate, SrSiO3. Acta Cryst C 53:534–536

    Article  Google Scholar 

  10. Kojitani H, Kido M, Akaogi M (2005) Rietveld analysis of a new high-pressure strontium silicate SrSi2O5. Phys Chem Miner 32:290–294

    Article  Google Scholar 

  11. Wang X, Zhang X, Wang C et al (2013) Influences of phase composition on Sr3SiO5:Eu2+ luminous performance. J Rare Earths 31:456–460

    Article  Google Scholar 

  12. Catti M, Gazzoni G, Ivaldi G, Zanini G (1983) The β–α′ phase transition of Sr2SiO4. I. Order–disorder in the structure of the α′ form at 383 K. Acta Cryst B 39:674–679

    Article  Google Scholar 

  13. Machida KI, Adachi GY, Shiokawa J et al (1982) Structure and high-pressure polymorphism of strontium metasilicate. Acta Cryst B 38:386–389

    Article  Google Scholar 

  14. Machida K, Adachi G, Shiokawa J et al (1982) High-pressure synthesis, crystal structures, and luminescence properties of europium(II) metasilicate and europium(II)-activated calcium and strontium metasilicates. Inorg Chem 21:1512–1519

    Article  Google Scholar 

  15. Pieper G, Eysel W, Hahn T (1972) Solid Solubility and Polymorphism in the System Sr2SiO4-Sr2GeO4-Ba2GeO4-Ba2SiO4. J Am Ceram Soc 55:619–622

    Article  Google Scholar 

  16. Catti M, Gazzoni G, Ivaldi G (1983) Structures of twinned β-Sr2SiO4 and of α′-Sr1.9Ba0.1SiO4. Acta Crystallogr Sect C 39:29–34

    Article  Google Scholar 

  17. Kerstan M, Thieme C, Grosch M et al (2013) BaZn2Si2O7 and the solid solution series BaZn2−xCoxSi2O7 (0 ≤ x ≤ 2) as high temperature seals for solid oxide fuel cells studied by high-temperature X-ray diffraction and dilatometry. J Solid State Chem 207:55–60

    Article  Google Scholar 

  18. Kerstan M, Müller M, Rüssel C (2011) Binary, ternary and quaternary silicates of CaO, BaO and ZnO in high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD). Mater Res Bull 46:2456–2463

    Article  Google Scholar 

  19. Latreche H, Bozzolo G, Masset PJ et al (2010) Measurements of the coefficient of thermal expansion (CTE) of NiAlMo alloys and comparison with modelling predictions. Mater Sci Eng A 527:5837–5843

    Article  Google Scholar 

  20. Kerstan M, Rüssel C (2011) Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD). J Power Sources 196:7578–7584

    Article  Google Scholar 

  21. Dashkevich RY, Aleksandrov AV (2007) Resonance character of polymorphic transformations for the phase transition α′L → β-Ca2SiO4. Russ J Non-Ferr Met 48:404–406

    Article  Google Scholar 

  22. Swamy V, Dubrovinsky LS, Tutti F (1997) High-temperature raman spectra and thermal expansion of wollastonite. J Am Ceram Soc 80:2237–2247

    Article  Google Scholar 

  23. Oehlschlegel G, Kockel A, Biedl A (1974) Anisotrope Wärmedehnung und Mischkristallbildung einiger Verbindungen des ternären Systems BaO-Al2O3-SiO2, Teil II. Messungen an Strukturen mit dreidimensionaler Verknüpfung von (Si, Al)O4-Tetraedern und Modellvorstellungen über deren Wärmedehnungsanisotropie. Glastech Ber 47:31–41

    Google Scholar 

  24. Dove MT, Heine V, Hammonds KD (1995) Rigid unit modes in framework silicates. Mineralog Mag 59:629–639

    Article  Google Scholar 

  25. Takenaka K (2012) Negative thermal expansion materials: technological key for control of thermal expansion. Sci Technol Adv Mater 13:013001

    Article  Google Scholar 

  26. Grosse HP, Tillmanns E (1974) Bariumorthosilicate, Ba2SiO4. Cryst Struct Commun 3:599–601

    Google Scholar 

  27. Bayer G (1972) Thermal expansion of ABO4-compounds with zircon- and scheelite structures. J Less-Common Metals 26:255–262

    Article  Google Scholar 

  28. Pistorius CWFT, Pistorius MC (1962) Lattice constants and thermal-expansion properties of the chromates and selenates of lead, strontium and barium. Z Kristallogr 117:259–271

    Article  Google Scholar 

  29. Ohashi Y (1984) Polysynthetically-twinned structures of enstatite and wollastonite. Phys Chem Miner 10:217–229

    Article  Google Scholar 

  30. Endo T, Doi Y, Wakeshima M, Hinatsu Y (2010) Crystal structures and magnetic properties of new europium melilites Eu2MSi2O7 (M = Mg, Mn) and their strontium analogues. Inorg Chem 49:10809–10814

    Article  Google Scholar 

  31. Grosse HP, Tillmanns E (1974) Bariummetasilicate, BaSiO3. Cryst Struct Commun 3:603–605

    Google Scholar 

  32. Della Giusta A, Ottonello G, Secco L (1990) Precision estimates of interatomic distances using site occupancies, ionization potentials and polarizability in Pbnm silicate olivines. Acta Cryst B 46:160–165

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Thieme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thieme, C., Rüssel, C. Thermal expansion behavior of SrSiO3 and Sr2SiO4 determined by high-temperature X-ray diffraction and dilatometry. J Mater Sci 50, 5533–5539 (2015). https://doi.org/10.1007/s10853-015-9100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9100-3

Keywords

Navigation