Skip to main content
Log in

Experimental and theoretical studies on the electronic properties of praseodymium chloride-filled single-walled carbon nanotubes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Praseodymium chloride (PrCl3) was encapsulated into channels of 1.4 nm diameter single-walled carbon nanotubes (SWCNTs) by a capillary filling method. The high-resolution transmission electron microscopy data demonstrated a high filling factor of the nanotubes and the formation of one-dimensional (1D) PrCl3 nanocrystals. The optical absorption, Raman spectroscopy, and X-ray photoelectron spectroscopy data testified to the filling-induced lowering of the Fermi level of the nanotubes as a result of the electron transfer from the SWCNTs to the embedded PrCl3. The density functional theory modeling showed the absence of local chemical interactions between the nanotubes and the 1D crystals. It was found that the incorporated PrCl3 has stronger influence on the electronic properties of metallic nanotubes than semiconducting SWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Monthioux M (2002) Filling single-wall carbon nanotubes. Carbon 40:1809–1823

    Article  Google Scholar 

  2. Monthioux M, Flahaut E, Cleuziou JP (2006) Hybrid carbon nanotubes: strategy, progress, and perspectives. J Mater Res 21:2774–2793

    Article  Google Scholar 

  3. Kharlamova MV (2013) Electronic properties of pristine and modified single-walled carbon nanotubes. Physics-Uspekhi 56:1047–1073

    Google Scholar 

  4. Sloan J, Kirkland AI, Hutchison JL, Green MLH (2003) Aspects of crystal growth within carbon nanotubes. C R Phys 4:1063–1074

    Article  Google Scholar 

  5. Sloan J, Friedrichs S, Meyer RR, Kirkland AI, Hutchison JL, Green MLH (2002) Structural changes induced in nanocrystals of binary compounds confined within single walled carbon nanotubes: a brief review. Inorg Chim Acta 330:1–12

    Article  Google Scholar 

  6. Kirkland AI, Meyer MR, Sloan J, Hutchison JL (2005) Structure determination of atomically controlled crystal architectures grown within single wall carbon nanotubes. Microsc Microanal 11:401–409

    Article  Google Scholar 

  7. Philp E, Sloan J, Kirkland AI, Meyer RR, Friedrichs S, Hutchison JL, Green MLH (2003) An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat Mater 2:788–791

    Article  Google Scholar 

  8. Carter R, Suyetin M, Lister S, Dyson MA, Trewhitt H, Goel S, Liu Z, Suenaga K, Giusca C, Kashtiban RJ, Hutchison JL, Dore JC, Bell GR, Bichoutskaia E, Sloan J (2014) Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals. Dalton Trans 43:7391–7399

    Article  Google Scholar 

  9. Yashina LV, Eliseev AA, Kharlamova MV, Volykhov AA, Egorov AV, Savilov SV, Lukashin AV, Puttner R, Belogorokhov AI (2011) Growth and characterization of one-dimensional SnTe crystals within the single-walled carbon nanotube channels. J Phys Chem C 115:3578–3586

    Article  Google Scholar 

  10. Neudachina VS, Shatalova TB, Shtanov VI, Yashina LV, Zyubina TS, Tamm ME, Kobeleva SP (2005) XPS study of SnTe(100) oxidation by molecular oxygen. Surf Sci 584:77–82

    Article  Google Scholar 

  11. Yashina LV, Püttner R, Neudachina VS, Zyubina TS, Shtanov VI, Poygin MV (2008) X-ray photoelectron studies of clean and oxidized alpha-GeTe(111) surfaces. J Appl Phys 103:094909

    Article  Google Scholar 

  12. Kobayashi K, Suenaga K, Saito T, Shinohara H, Iijima S (2010) Photoreactivity preservation of AgBr nanowires in confined nanospaces. Adv Mater 22:3156–3160

    Article  Google Scholar 

  13. Eliseev AA, Yashina LV, Brzhezinskaya MM, Chernysheva MV, Kharlamova MV, Verbitsky NI, Lukashin AV, Kiselev NA, Kumskov AS, Zakalyuhin RM, Hutchison JL, Freitag B, Vinogradov AS (2010) Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes. Carbon 48:2708–2721

    Article  Google Scholar 

  14. Eliseev AA, Yashina LV, Verbitskiy NI, Brzhezinskaya MM, Kharlamova MV, Chernysheva MV, Lukashin AV, Kiselev NA, Kumskov AS, Freitag B, Generalov AV, Vinogradov AS, Zubavichus YV, Kleimenov E, Nachtegaal M (2012) Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures. Carbon 50:4021–4039

    Article  Google Scholar 

  15. Kharlamova MV, Yashina LV, Volykhov AA, Niu JJ, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Belogorokhov AI, Eliseev AA (2012) Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides. Eur Phys J B 85:34

    Article  Google Scholar 

  16. Kharlamova MV, Yashina LV, Lukashin AV (2013) Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides. J Mater Sci 48:8412–8419. doi:10.1007/s10853-013-7653-6

    Article  Google Scholar 

  17. Kharlamova MV, Yashina LV, Eliseev AA, Volykhov AA, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Lukashin AV, Tretyakov YuD (2012) Single-walled carbon nanotubes filled with nickel halogenides: atomic structure and doping effect. Phys Status Solidi B 249:2328–2332

    Article  Google Scholar 

  18. Tonkikh AA, Obraztsova ED, Obraztsova EA, Belkin AV, Pozharov AS (2012) Optical spectroscopy of iodine-doped single-wall carbon nanotubes of different diameter. Phys Status Solidi B 249:2454–2459

    Article  Google Scholar 

  19. Shiozawa H, Pichler T, Kramberger C, Gruneis A, Knupfer M, Buchner B, Zolyomi V, Koltai J, Kurti J, Batchelor D, Kataura H (2008) Fine tuning the charge transfer in carbon nanotubes via the interconversion of encapsulated molecules. Phys Rev B 77:153402

    Article  Google Scholar 

  20. Shiozawa H, Pichler T, Kramberger C, Rummeli M, Batchelor D, Liu Z, Suenaga K, Kataura H, Silva SRP (2009) Screening the missing electron: nanochemistry in action. Phys Rev Lett 102:046804

    Article  Google Scholar 

  21. Li LJ, Khlobystov AN, Wiltshire JG, Briggs GAD, Nicholas RJ (2005) Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat Mater 4:481–485

    Article  Google Scholar 

  22. Takenobu T, Takano T, Shiraishi M, Murakami Y, Ata M, Kataura H, Achiba Y, Iwasa Y (2003) Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat Mater 2:683–688

    Article  Google Scholar 

  23. Kharlamova MV, Sauer M, Saito T, Sato Y, Suenaga K, Pichler T, Shiozawa H (2015) Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale 7:1383–1391

    Article  Google Scholar 

  24. Kharlamova MV, Niu JJ (2012) Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes. Appl Phys A 109:25–29

    Article  Google Scholar 

  25. Kharlamova MV, Niu JJ (2012) Donor doping of single-walled carbon nanotubes by filling of channels with silver. J Exp Theor Phys 115:485–491

    Article  Google Scholar 

  26. Corio P, Santos AP, Santos PS, Temperini MLA, Brar VW, Pimenta MA, Dresselhaus MS (2004) Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem Phys Lett 383:475–480

    Article  Google Scholar 

  27. Borowiak-Palen E, Ruemmeli MH, Gemming T, Pichler T, Kalenczuk RJ, Silva SRP (2006) Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties. Nanotechnology 17:2415–2419

    Article  Google Scholar 

  28. Ilie A, Bendall JS, Nagaoka K, Egger S, Nakayama T, Crampin S (2011) Encapsulated inorganic nanostructures: a route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes. ACS Nano 5:2559–2569

    Article  Google Scholar 

  29. Kono J, Nicholas RJ, Roche S (2008) High magnetic field phenomena in carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Topics in applied physics, carbon nanotubes, vol 111. Springer GmbH, Heidelberg, pp 393–421

    Chapter  Google Scholar 

  30. Kahle HG (1956) Analyse der Spektren und Zustande einiger Seltener Erden in monoklinen Chlorid-Einkristallen –II. Erbium-Chlorid ErCl3·6H2O. Z Phys 145:361–367

    Article  Google Scholar 

  31. Dieke GH, Singh S (1961) Absorption and fluorescence spectra with magnetic properties of ErCl3. J Chem Phys 35:555–563

    Article  Google Scholar 

  32. Crosswhite H, Dieke GH (1961) Spectrum and magnetic properties of hexagonal DyCl3. J Chem Phys 35:1535–1548

    Article  Google Scholar 

  33. Carlson EH, Dieke GH (1961) The state of the Nd3+ ion as derived from the absorption and fluorescence spectra of NdCl3 and their Zeeman effects. J Chem Phys 34:1602–1609

    Article  Google Scholar 

  34. Carlson EH, Adams HS (1969) Chlorine nuclear quadrupole resonance in ErCl3 and some similar chlorides. J Chem Phys 51:388–392

    Article  Google Scholar 

  35. Xu CG, Sloan J, Brown G, Bailey S, Williams VC, Friedrichs S, Coleman KS, Flahaut E, Hutchison JL, Dunin-Borkowski RE, Green MLH (2000) 1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chem Commun 24:2427–2428

    Article  Google Scholar 

  36. Satishkumar BC, Taubert A, Luzzi DE (2003) Filling single-wall carbon nanotubes with d- and f-metal chloride and metal nanowires. J Nanosci Nanotech 3:159–163

    Article  Google Scholar 

  37. Kitaura R, Ogawa D, Kobayashi K, Saito T, Ohshima S, Nakamura T, Yoshikawa H, Awaga K, Shinohara H (2008) High Yield Synthesis and characterization of the structural and magnetic properties of crystalline ErCl3 nanowires in single-walled carbon nanotube templates. Nano Research 1:152–157

    Article  Google Scholar 

  38. Ayala P, Kitaura R, Nakanishi R, Shiozawa H, Ogawa D, Hoffmann P, Shinohara H, Pichler T (2011) Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3 nanowires inside carbon nanotubes. Phys Rev B 83:085407

    Article  Google Scholar 

  39. Sloan J, Kirkland AI, Hutchison JL, Green MLH (2002) Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem Commun 13:1319–1332

    Article  Google Scholar 

  40. Friedrichs S, Falke U, Green MLH (2005) Phase separation of LaI3 inside single-walled carbon nanotubes. ChemPhysChem 6:300–305

    Article  Google Scholar 

  41. Friedrichs S, Kirkland AI, Meyer RR, Sloan J, Green MLH (2005) LaI2@(18,3)SWNT: the unprecedented structure of a LaI2 “Crystal”, encapsulated within a single-walled carbon nanotube. Microsc Microanal 11:421–430

    Article  Google Scholar 

  42. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  Google Scholar 

  43. Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115–13118

    Article  Google Scholar 

  44. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  Google Scholar 

  45. Eliseev AA, Kharlamova MV, Chernysheva MV, Lukashin AV, Tretyakov YuD, Kumskov AS, Kiselev NA (2009) Preparation and properties of single-walled nanotubes filled with inorganic compounds. Russ Chem Rev 78:833–854

    Article  Google Scholar 

  46. Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558

    Article  Google Scholar 

  47. Dresselhaus MS, Dresselhaus G, Jorio A, Filho AGS, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40:2043–2061

    Article  Google Scholar 

  48. Telg H, Duque JG, Staiger M, Tu XM, Hennrich F, Kappes MM, Zheng M, Maultzsch J, Thomsen C, Doorn SK (2012) Chiral index dependence of the G(+) and G(−) Raman modes in semiconducting carbon nanotubes. ACS Nano 6:904–911

    Article  Google Scholar 

  49. Jorio A, Pimenta M, Filho AS, Saito R, Dresselhaus G, Dresselhaus MS (2003) Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys 5:139

    Article  Google Scholar 

  50. Fouquet M, Telg H, Maultzsch J, Wu Y, Chandra B, Hone J, Heinz TF, Thomsen C (2009) Longitudinal optical phonons in metallic and semiconducting carbon nanotubes. Phys Rev Lett 102:075501

    Article  Google Scholar 

  51. Brown SDM, Corio P, Marucci A, Dresselhaus MS, Pimenta MA, Kneipp K (2000) Anti-stokes Raman spectra of single-walled carbon nanotubes. Phys Rev B 61:R5137–R5140

    Article  Google Scholar 

  52. Araujo PT, Maciel IO, Pesce PBC, Pimenta MA, Doorn SK, Qian H, Hartschuh A, Steiner M, Grigorian L, Hata K, Jorio A (2008) Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys Rev B 77:241403

    Article  Google Scholar 

  53. Kharlamova MV, Yashina LV, Lukashin AV (2013) Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Appl Phys A 112:297–304

    Article  Google Scholar 

  54. Kharlamova MV (2013) Comparison of influence of incorporated 3d-, 4d-and 4f-metal chlorides on electronic properties of single-walled carbon nanotubes. Appl Phys A 111:725–731

    Article  Google Scholar 

  55. Kramberger C, Rauf H, Shiozawa H, Knupfer M, Buchner B, Pichler T, Batchelor D, Kataura H (2007) Unraveling van Hove singularities in X-ray absorption response of single-wall carbon nanotubes. Phys Rev B 75:235437

    Article  Google Scholar 

  56. Ayala P, Miyata Y, De Blauwe K, Shiozawa H, Feng Y, Yanagi K, Kramberger C, Silva SRP, Follath R, Kataura H, Pichler T (2009) Disentanglement of the electronic properties of metallicity-selected single-walled carbon nanotubes. Phys Rev B 80:205427

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. A.V. Krestinin (Institute of Problems of Chemical Physics, RAS, Chernogolovka) for providing the pristine SWCNTs. The NEXAFS and XPS spectra were measured at the Russian–German beamline as a part of the bilateral program “Russian-German Laboratory at Helmholtz-Zentrum Berlin”. Quantum chemical calculations were performed using SKIF MSU and “Lomonosov” supercomputers, Supercomputing Center of Lomonosov Moscow State University. The authors acknowledge a partial support from Lomonosov Moscow State University Program of Development and Russian Science Foundation (Grant No. 14-13-00747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kharlamova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharlamova, M.V., Volykhov, A.A., Yashina, L.V. et al. Experimental and theoretical studies on the electronic properties of praseodymium chloride-filled single-walled carbon nanotubes. J Mater Sci 50, 5419–5430 (2015). https://doi.org/10.1007/s10853-015-9086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9086-x

Keywords

Navigation