Skip to main content
Log in

Synthesis and characterization of YAG:Ce,Gd and YAG:Ce,Gd/PMMA nanocomposites for optoelectronic applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A sol–gel method was developed to obtain cerium-, gadolinium-(co)activated yttrium aluminum garnet (YAG:Ce,Gd) phosphor. The composite was obtained by incorporating YAG:Ce,Gd powder in poly(methyl methacrylate) (PMMA) matrix in the presence of tetrahydrofuran (THF). Sample characterization was performed using Fourier transform infrared spectrometry, X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy, and fluorescence spectroscopy. Results showed a garnet pure phase at 1000 C, a nanoscale phosphor with spherical morphology and a good dispersion in PMMA matrix without structural modification of YAG:Ce,Gd in the composite. This type of phosphor can be used for all commercial blue chips and YAG:Ce,Gd/PMMA composite is a good candidate for white light-emitting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma X, Zhou B, Deng Y, Sheng Y, Wang C, Pan Y, Wang Z (2008) Study on CaCO3/PMMA nanocomposite microspheres by soapless emulsion polymerization. Coll Surf A 312:190–194

    Article  Google Scholar 

  2. Yang HK, Noh HM, Jeong JH (2014) Low temperature synthesis and luminescence investigations of YAG:Ce, Eu nanocomposite powder for warm white light-emitting diode. Solid State Sci 27:43–46

    Article  Google Scholar 

  3. Smet PF, Parmentier AB, Poelman D (2011) Selecting conversion phosphors for white light-emitting diodes. J Electrochem Soc 158:37–54. doi:10.1149/1.3568524

    Article  Google Scholar 

  4. Li K, Shen C (2012) White LED based on nano-YAG:Ce3+/YAG:Ce3+, Gd3+ hybrid phosphors. Optik 123:621–623

    Article  Google Scholar 

  5. Lin CC, Zheng YS, Chen HY, Ruan CH, Xiao GW, Liu RS (2010) Improving optical properties of white LED fabricated by a blue LED chip with yellow/red phosphors. J Electrochem Soc 157(9):H900–H903

    Article  Google Scholar 

  6. Shi H, Zhu C, Huang J, Chen J, Chen D, Wang W, Wang F, Cao Y, Yuan X (2014) Luminescence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances. Opt Mater Express 4(4):649–655

    Article  Google Scholar 

  7. Zhang K, Hu W, Wu Y, Liu H (2009) Influence of processing techniques on the properties of YAG:Ce nanophosphor. Ceram Int 35:719–723

    Article  Google Scholar 

  8. Gana L, Mao ZY, Xua FF, Zhu YC, Liu XJ (2014) Molten salt synthesis of YAG:Ce3+ phosphors from oxide raw materials. Ceram Int 40:5067–5071

    Article  Google Scholar 

  9. Lin YS, Liu RS, Cheng BM (2005) Investigation of the luminescent properties of Tb3+-substituted YAG:Ce, Gd phosphors. J Electrochem Soc 152(6):J41–J44

    Article  Google Scholar 

  10. Tanner PA, Fu L, Ning L, Cheng BM, Brik MG (2007) Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels. J Phys 19:216213–216227

    Google Scholar 

  11. Matsui Y, Horikawa H, Iwasakia M, Park W (2011) Preparation of YAG:Ce nanocrystals by an environmentally friendly wet process Effect of Ce3+ concentration on photoluminescent property. J Ceram Process Res 12(3):348–351

    Google Scholar 

  12. Kaithwas N, Dave M, Kar S, Bartwal KS (2014) Investigations on single phase formation of Dy doped Y3Al5O12 nanoparticles. Open J Mod Phys 1(1):29–33

    Google Scholar 

  13. Li X, Zheng B, Odoom-Wubah T, Huang J (2013) Co-precipitation synthesis and two-step sintering of YAG powders for transparent ceramics. Ceram Int 39:7983–7988

    Article  Google Scholar 

  14. Yang H, Yuan L, Zhu G, Yu A, Xu H (2009) Luminescent properties of YAG:Ce3+ phosphor powders prepared by hydrothermal-homogeneous precipitation method. Mater Lett 63:2271–2273

    Article  Google Scholar 

  15. Le Z, Zhou L, Jinzhen Z, Hao Y, Pengd H, Yan C, Qitu Z (2012) Citrate sol-gel combustion preparation and photoluminescence properties of YAG:Ce phosphors. J Rare Earth 30(4):289

    Article  Google Scholar 

  16. Schiopu V, Matei A, Dinescu A, Danila M, Cernica I (2012) Ce, Gd codoped YAG nanopowder for white light emitting device. J Nanosci Nanotechnol 12(11):8836–8840

    Article  Google Scholar 

  17. Song Z, Liao J, Ding X, Liu X, Liu Q (2013) Synthesis of YAG phosphor particles with excellent morphology by solid-state reaction. J Cryst Growth 365:24–28

    Article  Google Scholar 

  18. Dinh NN, Chung DN, Duong PH (2012) Characterization of hybrid composites of nano YAG:Ce-CdSe/ZnS quantum dots and conjugate polymer used for solid state lighting. Inter J Eng Technol 2(7):1111–1115

    Google Scholar 

  19. Narendran N (2005) Improved performance white LED. In: Fifth International Conference on Solid State Lighting, Proceedings of SPIE 5941:45–50

  20. Chung DN, Tuan LT, Hao TC, Hieu DN, Dinh NN (2013) Organic—inorganic hybrid luminescent composite for solid-state lighting. Commun Phys 23(1):57–63

    Article  Google Scholar 

  21. INTEMATIX (2011) Considerations for Encapsulant Material Selection for Phosphor-Converted LEDs. www.intematix.com

  22. Brostow W, Dutta M, Ricardo de Souza J, Rusek P, Marcos de Medeiros A, Ito EN (2010) Nanocomposites of poly(methyl methacrylate) (PMMA) and montmorillonite (MMT) Brazilian clay: a tribological study. Express Polym Lett 4(9):570–575

    Article  Google Scholar 

  23. Gross S, Camozzo D, Di Noto V, Armelao L, Tondello E (2007) PMMA: a key macromolecular component for dielectric low-k hybrid inorganic–organic polymer films. Eur Polym J 43:673–696

    Article  Google Scholar 

  24. Mark JE (ed) (1999) Polymer data handbook. Oxford University Press, New York

    Google Scholar 

  25. Motaung TE, Luyt AS, Bondioli F, Messori M, Saladino ML, Spinella A, Nasillo G, Caponetti E (2012) PMMA-titania nanocomposites: properties and thermal degradation behaviour. Polym Degrad Stabil 97:1325–1333

    Article  Google Scholar 

  26. Oliveira M, Machado AV (2013) Preparation of polymer-based nanocomposites by different routes. http://repositorium.sdum.uminho.pt/bitstream/1822/26120/1/Chapter.pdf

  27. Saladino ML, Zanotto A, Martino DC, Spinella A, Nasillo G, Caponetti E (2010) Ce:YAG nanoparticles embedded in aPMMA matrix : preparation and characterization. Langmuir 26(16):13442–13449

    Article  Google Scholar 

  28. Zanotto A, Spinella A, Nasillo G, Caponetti E, Luyt AS (2012) Macro-micro relationship in nanostructured functional composites”. Express Polym Lett 6(5):410–416

    Article  Google Scholar 

  29. Hogan CJ Jr, Yuna KM, Chenb DR, Lenggoroc IW, Biswasb P, Okuyama K (2007) Controlled size polymer particle production via electrohydrodynamic atomization. Coll Surf A 311:67–76

    Article  Google Scholar 

  30. Schiopu V, Macrin M, Cernica I (2005) Preparation of yttrium aluminium garnet doped with cerium for application in optoelectronics. CAS 2005 Proceedings 1:149–152

  31. Pradal N, Chadeyron G, Potdevin A, Deschamps J, Mahiou R (2013) Elaboration and optimization of Ce-doped Y3Al5O12 nanopowder dispersions. J Eur Ceram Soc 33:1935–1945

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Funding Programme CONVERT—Project No. PN09290301 (2008-2013). Authors would like to acknowledge the cooperation of Andrei Avram.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vasilica Tucureanu or Alina Matei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tucureanu, V., Matei, A., Mihalache, I. et al. Synthesis and characterization of YAG:Ce,Gd and YAG:Ce,Gd/PMMA nanocomposites for optoelectronic applications. J Mater Sci 50, 1883–1890 (2015). https://doi.org/10.1007/s10853-014-8751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8751-9

Keywords

Navigation