Skip to main content
Log in

Role of a gradient interface layer in interfacial enhancement of carbon fiber/epoxy hierarchical composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To improve the interfacial properties of carbon fibers/epoxy composites, we introduced a gradient interphase reinforced by graphene sheets between carbon fibers and matrix with a liquid phase deposition strategy. Interlaminar shear strength and flexural strength of the composites are both improved. The interfacial reinforcing mechanisms are explored by analyzing the structure of interfacial phase with linear scanning system of scanning electron microscope and atomic force microscope. Results indicate that carbon element shows a graded dispersion in the interface region and a gradient interface layer with the modulus decreasing from fibers and matrix is found to be built. To verify the effect of gradient interphase on the interfacial properties of composites, the mixture of carbon fiber/graphene/epoxy is sonicated before curing to disperse graphene sheets in matrix homogeneously. As a result, gradient interphase structures are disappeared and interfacial performance of composites is found to be weakened. The role of gradient interface layers in enhancing interfacial performances is further proved from a different angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang XQ, Fan XY, Yan C et al (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. Acs Appl Mater Interf 4:1543–1552. doi:10.1021/am201757v

    Article  Google Scholar 

  2. Yavari F, Rafiee MA, Rafiee J, Yu ZZ, Koratkar N (2010) Dramatic increase in fatigue life in hierarchical graphene composites. Acs Appl Mater Interf 2:2738–2743. doi:10.1021/am100728r

    Article  Google Scholar 

  3. Kim M, Park Y-B, Okoli OI, Zhang C (2009) Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos Sci Technol 69:335–342. doi:10.1016/j.compscitech.2008.10.019

    Article  Google Scholar 

  4. Peng Q, He X, Li Y et al (2012) Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites. J Mater Chem 22:5928–5931. doi:10.1039/c2jm16723a

    Article  Google Scholar 

  5. Chou T-W, Gao L, Thostenson ET, Zhang Z, Byun J-H (2010) An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol 70:1–19. doi:10.1016/j.compscitech.2009.10.004

    Article  Google Scholar 

  6. Yokozeki T, Iwahori Y, Ishibashi M et al (2009) Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes. Compos Sci Technol 69:2268–2273. doi:10.1016/j.compscitech.2008.12.017

    Article  Google Scholar 

  7. Yang XL, Wang ZC, Xu MZ, Zhao R, Liu XB (2013) Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: carbon fiber and graphene nanoplatelet. Mater Des 44:74–80. doi:10.1016/j.matdes.2012.07.051

    Article  Google Scholar 

  8. He X, Zhang F, Wang R, Liu W (2007) Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multi-walled carbon nanotubes onto the fibers. Carbon 45:2559–2563. doi:10.1016/j.carbon.2007.08.018

    Article  Google Scholar 

  9. Green KJ, Dean DR, Vaidya UK, Nyairo E (2009) Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: synthesis, mechanical, and thermomechanical behavior. Compos Part A 40:1470–1475. doi:10.1016/j.compositesa.2009.05.010

    Article  Google Scholar 

  10. Arai M, Noro Y, Sugimoto K-I, Endo M (2008) Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Compos Sci Technol 68:516–525. doi:10.1016/j.compscitech.2007.06.007

    Article  Google Scholar 

  11. Sager RJ, Klein PJ, Lagoudas DC et al (2009) Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos Sci Technol 69:898–904. doi:10.1016/j.compscitech.2008.12.021

    Article  Google Scholar 

  12. Thostenson ET, Li WZ, Wang DZ, Ren ZF, Chou TW (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91:6034–6037. doi:10.1063/1.1466880

    Article  Google Scholar 

  13. Bekyarova E, Thostenson ET, Yu A et al (2007) Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 23:3970–3974. doi:10.1021/la062743p

    Article  Google Scholar 

  14. Wicks SS, de Villoria RG, Wardle BL (2010) Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Compos Sci Technol 70:20–28. doi:10.1016/j.compscitech.2009.09.001

    Article  Google Scholar 

  15. Garcia EJ, Wardle BL, Hart AJ, Yamamoto N (2008) Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos Sci Technol 68:2034–2041. doi:10.1016/j.compscitech.2008.02.028

    Article  Google Scholar 

  16. Zhang F-H, Wang R-G, He X-D, Wang C, Ren L-N (2009) Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid. J Mater Sci 44:3574–3577. doi:10.1007/s10853-009-3484-x

    Article  Google Scholar 

  17. Tehrani M, Boroujeni AY, Hartman TB, Haugh TP, Case SW, Al-Haik MS (2013) Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nanotube-epoxy composite. Compos Sci Technol 75:42–48. doi:10.1016/j.compscitech.2012.12.005

    Article  Google Scholar 

  18. Sanchez M, Campo M, Jimenez-Suarez A, Urena A (2013) Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM. Compos Part B 45:1613–1619. doi:10.1016/j.compositesb.2012.09.063

    Article  Google Scholar 

  19. Li M, Gu Y, Liu Y, Li Y, Zhang Z (2013) Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon 52:109–121. doi:10.1016/j.carbon.2012.09.011

    Article  Google Scholar 

  20. Zhu Y, Bakis CE, Adair JH (2012) Effects of carbon nanofiller functionalization and distribution on interlaminar fracture toughness of multi-scale reinforced polymer composites. Carbon 50:1316–1331. doi:10.1016/j.carbon.2011.11.001

    Article  Google Scholar 

  21. Zhao F, Huang Y (2011) Preparation and properties of polyhedral oligomeric silsesquioxane and carbon nanotube grafted carbon fiber hierarchical reinforcing structure. J Mater Chem 21:2867–2870. doi:10.1039/c0jm03919e

    Article  Google Scholar 

  22. Rodriguez AJ, Guzman ME, Lim C-S, Minaie B (2011) Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical polymer composites manufactured with multiscale-reinforcement fabrics. Carbon 49:937–948. doi:10.1016/j.carbon.2010.10.057

    Article  Google Scholar 

  23. Liang J, Wang Y, Huang Y et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925. doi:10.1016/j.carbon.2008.12.038

    Article  Google Scholar 

  24. Qiu JJ, Wang SR (2011) Enhancing polymer performance through graphene sheets. J Appl Polym Sci 119:3670–3674. doi:10.1002/app.33068

    Article  Google Scholar 

  25. Rafiq R, Cai D, Jin J, Song M (2010) Increasing the toughness of nylon 12 by the incorporation of functionalized graphene. Carbon 48:4309–4314. doi:10.1016/j.carbon.2010.07.043

    Article  Google Scholar 

  26. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286. doi:10.1038/nature04969

    Article  Google Scholar 

  27. Bortz DR, Heras EG, Martin-Gullon I (2012) Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45:238–245. doi:10.1021/ma201563k

    Article  Google Scholar 

  28. Rafiee MA, Rafiee J, Srivastava I et al (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183. doi:10.1002/smll.200901480

    Article  Google Scholar 

  29. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. doi:10.1021/Nn1006368

    Article  Google Scholar 

  30. McAllister MJ, Li J-L, Adamson DH et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404. doi:10.1021/cm0630800

    Article  Google Scholar 

  31. Akhavan O, Ghaderi E, Rahighi R (2012) Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 6:2904–2916. doi:10.1021/nn300261t

    Article  Google Scholar 

  32. Lin Y, Ehlert G, Sodano HA (2009) Increased interface strength in carbon fiber composites through a ZnO nanowire interphase. Adv Funct Mater 19:2654–2660. doi:10.1002/adfm.200900011

    Article  Google Scholar 

  33. Ishida H, Chaisuwan T (2003) Mechanical property improvement of carbon fiber reinforced polybenzoxazine by rubber interlayer. Polym Compos 24:597–607. doi:10.1002/pc.10056

    Article  Google Scholar 

  34. Cech V (2007) Plasma-polymerized organosilicones as engineered interlayers in glass fiber/polyester composites. Compos Interf 14:321–334. doi:10.1163/156855407780452850

    Article  Google Scholar 

  35. Yao Y, Chen SH, Chen PJ (2013) The effect of a graded interphase on the mechanism of stress transfer in a fiber-reinforced composite. Mech Mater 58:35–54. doi:10.1016/j.mechmat.2012.11.008

    Article  Google Scholar 

  36. Zhao F, Huang Y, Liu L, Bai Y, Xu L (2011) Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites. Carbon 49:2624–2632. doi:10.1016/j.carbon.2011.02.026

    Article  Google Scholar 

  37. Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos Sci Technol 66:1162–1173. doi:10.1016/j.compscitech.2005.10.004

    Article  Google Scholar 

  38. Munz M, Sturm H, Schulz E, Hinrichsen G (1998) The scanning force microscope as a tool for the detection of local mechanical properties within the interphase of fibre reinforced polymers. Compos Part A 29:1251–1259. doi:10.1016/s1359-835x(98)00077-3

    Article  Google Scholar 

  39. Fan Z, Santare MH, Advani SG (2008) Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Compos Part A 39:540–554. doi:10.1016/j.compositesa.2007.11.013

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from National Natural Science Foundation of China (U1362108, 11175130), and Natural Science Foundation of Tianjin, China (10JCYBJC02300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Jin, H., Xu, Z. et al. Role of a gradient interface layer in interfacial enhancement of carbon fiber/epoxy hierarchical composites. J Mater Sci 50, 112–121 (2015). https://doi.org/10.1007/s10853-014-8571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8571-y

Keywords

Navigation