Skip to main content
Log in

Interatomic potential to predict the glass-forming ability of Ni–Nb–Mo ternary alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the recently proposed formulation, an interatomic n-body potential was first constructed for the Ni–Nb–Mo metal system, and then applied to atomistic simulations to investigate the glass formation of the Ni–Nb–Mo ternary alloys. The simulations not only clarify the atomistic process of the metallic glass formation but also predict for the ternary system of a quantitative composition region within which metallic glass formation is energetically favored. In addition, the energy difference between crystalline solid solution and disordered phase i.e., the driving force for a supersaturated solid solution to amorphize could be considered as an indicator of the glass-forming ability (GFA) for a specific alloy. The GFAs of a series of Ni–Nb–Mo alloys were derived from the simulations, leading to pinpoint the Ni55Nb30Mo15 alloy with superior GFA in this ternary metal system. The Ni55Nb30Mo15 alloy can be considered as the optimized ternary metallic glass for thermal stability and manufacturability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306

    Article  Google Scholar 

  2. Johnson WL (1999) Bulk glass-forming metallic alloys: science and technology. MRS Bull 24:42–56

    Article  Google Scholar 

  3. Greer AL (1995) Metallic glasses. Science 267:1947–1953

    Article  Google Scholar 

  4. Tian L, Cheng Y, Shan Z, Li J, Wang C, Han X, Sun J, Ma E (2012) Approaching the ideal elastic limit of metallic glasses. Nat Commun 3:609

    Article  Google Scholar 

  5. Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J, Mao WL, Mao H (2011) Long-range topological order in metallic glass. Science 332:1404–1406

    Article  Google Scholar 

  6. Ye JC, Lu J, Liu CT, Wang Q, Yang Y (2010) Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat Mater 9:619–623

    Article  Google Scholar 

  7. Inoue A, Shen B (2006) Formation and applications of bulk glassy alloys in late transition metal base. System 832:11

    Google Scholar 

  8. Inoue A, Shen B, Takeuchi A (2006) Developments and applications of bulk glassy alloys in late transition metal base system. Mater Trans 47:1275

    Article  Google Scholar 

  9. Nagase T, Ueda M, Umakoshi Y (2009) Preparation of Ni–Nb-based metallic glass wires by arc-melt-type melt-extraction method. J Alloy Compd 485:304–312

    Article  Google Scholar 

  10. Chen LY, Fu ZD, Zeng W, Zhang GQ, Zeng YW, Xu GL, Zhang SL, Jiang JZ (2007) Ultrahigh strength binary Ni–Nb bulk glassy alloy composite with good ductility. J Alloy Compd 443:105–108

    Article  Google Scholar 

  11. Jayalakshmi S, Vasantha VS, Fleury E, Gupta M (2012) Characteristics of Ni–Nb-based metallic amorphous alloys for hydrogen-related energy applications. Appl Energ 90:94–99

    Article  Google Scholar 

  12. Xia L, Li WH, Fang SS, Wei BC, Dong YD (2006) Binary Ni–Nb bulk metallic glasses. J Appl Phys 99:26103

    Article  Google Scholar 

  13. Zhang ZJ, Liu BX (1994) Solid-state reaction to synthesize Ni-Mo metastable alloys. J Appl Phys 76:3351–3356

    Article  Google Scholar 

  14. Zheng Cao L, Bai Xin L (1999) Experimental and theoretical studies on composition limits of metallic glass formation in the Ni–Mo system. Chin Phys Lett 16:667

    Article  Google Scholar 

  15. Dai XD, Li JH, Liu BX (2005) Atomistic modeling of crystal-to-amorphous transition and associated kinetics in the Ni–Nb system by molecular dynamics simulations. J Phys Chem B 109:4717–4725

    Article  Google Scholar 

  16. Zhang Q, Lai WS, Liu BX (1999) Glass-forming ability determined by the atomic interaction potential for the Ni–Mo system. Phys Rev B 59:13521

    Article  Google Scholar 

  17. Tian H, Liu H, Zhang C, Zhao J, Dong C, Wen B (2012) Ab initio molecular dynamics simulation of binary Ni62.5Nb37.5 bulk metallic glass: validation of the cluster-plus-glue-atom model. J Mater Sci 47:7628–7634. doi:10.1007/s10853-012-6306-5

    Article  Google Scholar 

  18. Turnbull D (1969) Under what conditions can a glass be formed? Contemp Phys 10:473–488

    Article  Google Scholar 

  19. Haasen P, Jaffee RI (1986) Amorphous metals and semiconductors: proceedings of an international workshop. Coronado, California. Pergamon, Coronado

  20. Lu ZP, Bei H, Liu CT (2007) Recent progress in quantifying glass-forming ability of bulk metallic glasses. Intermetallics 15:618–624

    Article  Google Scholar 

  21. Liu BX, Lai WS, Zhang Q (2000) Irradiation induced amorphization in metallic multilayers and calculation of glass-forming ability from atomistic potential in the binary metal systems. Mater Sci Eng R 29:1–48

    Article  Google Scholar 

  22. Li JH, Dai Y, Cui YY, Liu BX (2011) Atomistic theory for predicting the binary metallic glass formation. Mater Sci Eng R 72:1–28

    Article  Google Scholar 

  23. Li JH, Dai Y, Dai XD (2012) Long-range n-body potential and applied to atomistic modeling the formation of ternary metallic glasses. Intermetallics 31:292–320

    Article  Google Scholar 

  24. Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mat Sci Eng R 44:45–89

    Article  Google Scholar 

  25. Lu BF, Kong LT, Jiang Z, Huang YY, Li JF, Zhou YH (2014) Roles of alloying additions on local structure and glass-forming ability of Cu–Zr metallic glasses. J Mater Sci 49:496–503. doi:10.1007/s10853-013-7725-7

    Article  Google Scholar 

  26. Yin J, Ma X, Zhou Z (2014) Glass-forming ability of Mg–Cu–Ni–Gd bulk metallic glasses with high strength. Trans Indian I Met 67:411–415

    Article  Google Scholar 

  27. Li JH, Zhao SZ, Dai Y, Cui YY, Liu BX (2011) Formation and structure of Al–Zr metallic glasses studied by Monte Carlo simulations. J Appl Phys 109:113538

    Article  Google Scholar 

  28. Turnbull D (1974) A structure information amorphous solid formation and interstitial solution behavior in metallic alloy systems. Le Journal de Physique Colloques 35:C1–C4

    Article  Google Scholar 

  29. Egami T, Waseda Y (1984) Atomic size effect on the formability of metallic glasses. J Non-Cryst Solids 64:113–134

    Article  Google Scholar 

  30. Dai XD, Kong Y, Li JH (2007) Long-range empirical potential model: application to fcc transition metals and alloys. Phys Rev B 75:104101

    Article  Google Scholar 

  31. Li JH, Dai Y, Dai XD, Wang TL, Liu BX (2008) Development of n-body potentials for hcp–bcc and fcc–bcc binary transition metal systems. Comp Mater Sci 43:1207–1215

    Article  Google Scholar 

  32. Dai XD, Li JH, Kong Y (2007) Long-range empirical potential for the bcc structured transition metals. Phys Rev B 75:52102

    Article  Google Scholar 

  33. Segall MD, Lindan PJ, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys: Condens Matter 14:2717

    Google Scholar 

  34. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570

    Google Scholar 

  35. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244

    Article  Google Scholar 

  36. Kittel C, McEuen P (1996) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  37. Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook, 2nd edn. MIT, Cambridge

    Google Scholar 

  38. Haynes WM, Lide DR, Bruno TJ (2012) CRC handbook of chemistry and physics 2012–2013. CRC, Boca Raton

    Google Scholar 

  39. Villars P (1997) Pearson’s handbook desk edition: crystallographic data for intermetallic phases. ASM International, Materials Park

    Google Scholar 

  40. Dai Y, Li JH, Che XL, Liu BX (2009) Proposed long-range empirical potential to study the metallic glasses in the Ni–Nb–Ta system. J Phys Chem B 113:7282–7290

    Article  Google Scholar 

  41. Zhang ZJ, Huang XY, Zhang ZX (1998) Hexagonal metastable phase formation in Ni3RM (RM = Mo, Nb, Ta) multilayered films by solid-state reaction. Acta Mater 46:4189–4194

    Article  Google Scholar 

  42. Rose JH, Smith JR, Guinea F, Ferrante J (1984) Universal features of the equation of state of metals. Phys Rev B 29:2963

    Article  Google Scholar 

  43. Sheng HW, Wilde G, Ma E (2002) The competing crystalline and amorphous solid solutions in the Ag–Cu system. Acta Mater 50:475–488

    Article  Google Scholar 

  44. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182

    Article  Google Scholar 

  45. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, London

    Google Scholar 

  46. Panagiotopoulos AZ, Quirke N, Stapleton M, Tildesley DJ (1988) Phase equilibria by simulation in the Gibbs ensemble: alternative derivation, generalization and application to mixture and membrane equilibria. Mol Phys 63:527–545

    Article  Google Scholar 

  47. Bai X, Li JH, Cui YY, Dai Y, Ding N, Liu BX (2012) Formation and structure of Cu–Zr–Al ternary metallic glasses investigated by ion beam mixing and calculation. J Alloy Compd 522:35–38

    Article  Google Scholar 

  48. Li Y, Wang TL, Ding N, Liu JB, Liu BX (2012) Metallic glass formation in the ternary Ni–Nb–Mo system by ion beam mixing. Sci China Technol Sci 55:2206–2211

    Article  Google Scholar 

  49. Zhang ZJ, Bai HY, Qiu QL, Yang T, Tao K, Liu BX (1993) Phase evolution upon ion mixing and solid-state reaction and thermodynamic interpretation in the Ni–Nb system. J Appl Phys 73:1702–1710

    Article  Google Scholar 

  50. Kimura H, Inoue A, Yamaura S, Sasamori K, Nishida M, Shinpo Y, Okouchi H (2003) Thermal stability and mechanical properties of glassy and amorphous Ni–Nb–Zr alloys produced by rapid solidification. Mater Trans 44:1167–1171

    Article  Google Scholar 

  51. Oreshkin AI, Mantsevich VN, Savinov SV, Oreshkin SI, Panov VI, Yavari AR, Miracle DB, Louzguine-Luzgin DV (2013) In situ visualization of Ni–Nb bulk metallic glasses phase transition. Acta Mater 61:5216–5222

    Article  Google Scholar 

  52. Cocco G, Enzo S, Barrett NT, Roberts KJ (1992) X-ray analysis of changes to the atomic structure around Ni associated with the interdiffusion and mechanical alloying of pure Ni and Mo powders. Phys Rev B 45:7066

    Article  Google Scholar 

  53. Luo SY, Li JH, Cui YY, Dai Y, Liu BX (2012) Monte Carlo simulations to study the forming ability and atomic configuration of the Cu–Al amorphous alloys. Intermetallics 25:109–114

    Article  Google Scholar 

  54. Li JH, Dai XD, Liang SH, Tai KP, Kong Y, Liu BX (2008) Interatomic potentials of the binary transition metal systems and some applications in materials physics. Phys Rep 455:1–134

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (51131003), the Ministry of Science and Technology of China (973 Program 2011CB606301, 2012CB825700) and the Administration of Tsinghua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Luo, S.Y., Li, J.H. et al. Interatomic potential to predict the glass-forming ability of Ni–Nb–Mo ternary alloys. J Mater Sci 49, 7263–7272 (2014). https://doi.org/10.1007/s10853-014-8433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8433-7

Keywords

Navigation