Skip to main content
Log in

Patterning SiC nanoprecipitate in Si single crystals by simultaneous dual- beam ion implantation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

β–SiC nanoprecipitates can be patterned in crystalline silicon with an almost monomodal size distribution by simultaneous-dual-beam of C+ and Si+ ion implantations at 550 °C. Their shape appears as spherical (average diameter ~4–5 nm) ,and they are in epitaxial relationship with the crystalline silicon matrix. The narrow size distribution follows the left wing of the carbon distribution where the nuclear ion stopping, and thus the point defect generation rate is largest. This observation allows us to conclude that the induced damage act as sinks for C atoms leading to the SiC nanoprecipitates formation centered at the maximum of the simulated damage distribution. The nuclear reaction analysis, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy techniques were used to characterize the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Normalization is carried out by dividing the analyzed area by the total nanostructure area.

References

  1. Weber WJ, Yu N, Wang LM (1998) Irradiation-induced amorphization in β-SiC. J Nucl Mater 253:53–59

    Article  Google Scholar 

  2. Debelle A, Thomé L, Dompoint D, Boulle A, Garrido F, Jagielski J, Chaussende D (2010) Characterization and modelling of the ion-irradiation induced disorder in 6H–SiC and 3C–SiC single crystals. J Phys D Appl Phys 43:455408

    Article  Google Scholar 

  3. Thomé L, Moll S, Debelle A, Garrido F, Sattonnay G, Jagielski J (2012) Use of channeling for the study of radiation effects in nuclear materials. Nucl Instrum Methods Phys Res B 290:6–12

    Article  Google Scholar 

  4. Benyagoub A, Audren A, Thomé L, Garrido F (2006) A thermal crystallization induced by electronic excitations in ion-irradiated silicon carbide. Appl Phys Lett 89:241914

    Article  Google Scholar 

  5. Serre C, Pérez-Rodríguez A, Romano-Rodríguez A, Morante JR, Kögler R, Skorupa W (1995) Spectroscopic characterization of phases formed by high-dose carbon ion implantation in silicon. J Appl Phys 77:2978

    Article  Google Scholar 

  6. Lindner JKN, Stritzker B (1999) Controlling the density distribution of SiC nanocrystals for the ion beam synthesis of buried SiC layers in silicon. Nucl Instrum Methods Phys Res B 147:249–255

    Article  Google Scholar 

  7. Eichhorn F, Schell N, Mücklich A, Metzger H, Matz W, Kőgler R (2002) Structural relation between Si and SiC formed by carbon ion implantation. J Appl Phys 91:1287

    Article  Google Scholar 

  8. Lindner JKN, Häberlen M, Thorwarth G, Stritzker B (2006) On the balance between ion beam induced nanoparticle formation and displacive precipitate resolution in the C-Si system. Mat Sci Eng C 26:857–861

    Article  Google Scholar 

  9. Kőgler R, Eichhorn F, Kaschny JR, Mücklich A, Reuther H, Heera V, Skorupa W, Serre C, Perez-Rodriguez A (2003) Synthesis of nano-sized SiC precipitates in Si by simultaneous dual-beam implantation of C+ and Si+ ions. Appl Phys A 76:827–835

    Article  Google Scholar 

  10. Serruys Y, Trocellier P, Miro S, Bordas É, Ruault MO, Kaïtasov O, Henry S, Leseigneur P, Bonnaillie Th, Pellegrino S, Vaubaillon S, Uriot D (2009) JANNUS: a multi-irradiation platform for experimental validation at the scale of the atomistic modelling. J Nucl Mater 386:967–970

    Article  Google Scholar 

  11. Pellegrino S, Trocellier P, Miro S, Serruys Y, Bordas É, Martin H, Chaâbane N, Vaubaillon S, Gallien JP, Beck L (2012) The JANNUS Saclay facility: a new platform for materials irradiation, implantation and ion beam analysis. Nucl Instrum Methods Phys Res B 273:213–217

    Article  Google Scholar 

  12. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, New York. SRIM program can be downloaded at www.srim.org

  13. Holström E, Kuronen A, Nordlund K (2008) Threshold defect production in silicon determined by density functional theory molecular dynamics simulations. Phys Rev B 78:045202

    Article  Google Scholar 

  14. Velisa G, Trocellier P, Vaubaillon S, Miro S, Serruys Y, Bordas É, Meslin E, Mylonas S, Coulon PE, Leprêtre F, Pilz A, Thomé L (2013) Tailoring of SiC nanoprecipitates formed in Si. Nucl Instrum Methods B 307(165):170

    Google Scholar 

  15. Trouslard P (1995), Report CEA-R-5703

  16. Mayer M (1997–1998) SIMNRA Version 6.0, Max-Planck-Institüt für Plasmaphysik, Garching

  17. Anderson R, Klepeis S, Benedict J, Vandygrift WG, Orndorff (1989), in: Cullis AG, Hutchinson JL (Eds.), Microscopy of Semiconducting Materials, Proceedings of the Royal Microscopical Society Conference, IOP Publishing LTD, Bristol, p 491

  18. Moll S, Zhang Y, Zhu Z, Edmondson PD, Namavar F, Weber WJ (2013) Comparison between simulated and experimental Au-ion profiles implanted in nanocrystalline ceria. Nucl Instrum Methods Phys Res B 307:93–97

    Article  Google Scholar 

  19. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  Google Scholar 

  20. Poudel PR, Rout B, Diercks DR, Strzhemechny YM, Mcdaniel FD (2011) Fluence dependant formation of β-SiC by ion implantation and thermal annealing. Appl Phys A 104:183–188

    Article  Google Scholar 

  21. Zirkelbach F, Stritzker B, Nordlund K, Lindner JKN, Schmidt WG, Rauls E (2011) Combined ab initio and classical potential simulation study on silicon carbide precipitation in silicon. Phys Rev B 84:064126

    Article  Google Scholar 

Download references

Acknowledgements

Experiments were carried out at JANNuS (Joint Accelerators for Nanoscience and Nuclear Simulation), Saclay, France, and supported by the French Network EMIR and “Programme Transverse Matériaux Avancés,” CEA-SACLAY-FRANCE. One of the authors (G. Velişa) is gratefully indebted to Estelle Meslin and Pierre-Eugene Coulon without whom the pioneer TEM and HRTEM measurements from this work could not have been achieved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gihan Velişa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velişa, G., Trocellier, P., Thomé, L. et al. Patterning SiC nanoprecipitate in Si single crystals by simultaneous dual- beam ion implantation. J Mater Sci 49, 4899–4904 (2014). https://doi.org/10.1007/s10853-014-8191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8191-6

Keywords

Navigation