Skip to main content
Log in

Effects of multi-walled carbon nanotube (MWCNT) dispersion and compatibilizer on the electrical and rheological properties of polycarbonate/poly(acrylonitrile–butadiene–styrene)/MWCNT composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the effects of multi-walled carbon nanotube (MWCNT) dispersion and poly(styrene-co-acrylonitrile)-g-maleic anhydride (SAN-g-MAH) as a compatibilizer on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), and rheological properties of polycarbonate (PC)/poly(acrylonitrile–butadiene–styrene) (ABS)/MWCNT composites were investigated. The morphological results from the scanning and transmission electron microscope images showed that the droplet size of the ABS decreased when the SAN-g-MAH (5 phr) was added to the PC/ABS (80/20) blend. This result suggests that the SAN-g-MAH acts as an effective compatibilizer in the PC/ABS blend. Also, the MWCNT appeared to be located more in the ABS phase (dispersed phase) than in the PC phase (continuous phase). The interfacial tension of the ABS/MWCNT composite was lower than that of the PC–MWCNT composite, and the lower value of interfacial tension of the ABS/MWCNT composite affected the preferred location of the MWCNT in the ABS phase more than in the PC phase. The electrical conductivities and EMI SE of the PC/ABS/MWCNT composite with the compatibilizer were higher than those of the composite without compatibilizer. The complex viscosity of the PC/ABS/MWCNT composite containing the SAN-g-MAH increased with the frequency compared to that of the composite without SAN-g-MAH. This result is possibly due to the increased degree of MWCNT dispersion. The result of rheological properties is consistent with the results of the morphology, electrical conductivity, and EMI SE of the PC/ABS/MWCNT composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Suarez H, Barlow JW, Paul DR (1984) Mechanical properties of ABS/polycarbonate blends. J Appl Polym Sci 29:3253

    Article  Google Scholar 

  2. Kim WN, Burns CM (1988) Thermal behavior, morphology, and some melt properties of blends of polycarbonate with poly(styrene-co-acrylonitrile) and poly(acrylonitrile–butadiene–styrene). Polym Eng Sci 28:1115

    Article  Google Scholar 

  3. Chun JH, Maeng KS, Suh KS (1991) Miscibility and synergistic effect of impact strength in polycarbonate/ABS blends. J Mater Sci 26:5347

    Article  Google Scholar 

  4. Tjong SC, Meng YZ (2000) Effect of reactive compatibilizers on the mechanical properties of polycarbonate/poly(acrylonitrile–butadiene–styrene) blends. Eur Polym J 36:123

    Article  Google Scholar 

  5. Han MS, Lee YK, Lee HS, Yun YH, Kim WN (2009) Electrical, morphological and rheological properties of carbon nanotube composites with polyethylene and poly(phenylene sulfide) by melt mixing. Chem Eng Sci 64:4649

    Article  Google Scholar 

  6. You KM, Park SS, Lee CS, Kim JM, Park GP, Kim WN (2011) Preparation and characterization of conductive carbon nanotube-polyurethane foam composites. J Mater Sci 46:6850. doi:10.1007/s10853-011-5645-y

    Article  Google Scholar 

  7. Rahaman M, Chaki TK, Khastgir D (2011) Development of high performance EMI shielding material from EVA, NBR, and their blends: effect of carbon black structure. J Mater Sci 46:3989. doi:10.1007/s10853-011-5326-x

    Article  Google Scholar 

  8. Sachdev VK, Patel K, Bhattacharya S, Tandon RP (2011) Electromagnetic interference shielding of graphite/acrylonitrile butadiene styrene composites. J Appl Polym Sci 120:1100

    Article  Google Scholar 

  9. Zhang L, Wang LB, See KY, Ma J (2013) Effect of carbonfiber reinforcement on electromagnetic interference shielding effectiveness of syntactic foam. J Mater Sci 48:7757. doi:10.1007/s10853-013-7597-x

    Article  Google Scholar 

  10. Huang CY, Wu CC (2000) The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites. Eur Polym J 36:2729

    Article  Google Scholar 

  11. Im JS, Kim JG, Lee YS (2009) Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon 47:2640

    Article  Google Scholar 

  12. Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN (2006) Rheological and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 47:4434

    Article  Google Scholar 

  13. Papanicolaou GC, Papaefthymiou KP, Koutsomitopoulou AF, Portan DV, Zaoutsos SP (2012) Effect of dispersion of MWCNTs on the static and dynamic mechanical behavior of epoxy matrix nanocomposites. J Mater Sci 47:350. doi:10.1007/s10853-011-5804-1

    Article  Google Scholar 

  14. Imran SM, Kim Y, Shao GN, Hussain M, Choa YH, Kim HT (2014) Enhancement of electroconductivity of polyaniline/grapheme oxide nanocomposites through in situ emulsion polymerization. J Mater Sci 49:1328. doi:10.1007/s10853-013-7816-5

    Article  Google Scholar 

  15. Zetina-Hernandez O, Duarte-Aranda S, May-Pat A, Canche-Escamilla G, Uribe-Calderon J, Gonzalez-Chi P, Aviles F (2013) Coupled electro-mechanical properties of multiwall carbon nanotube/polypropylene composites for strain sensing applications. J Mater Sci 48:7587. doi:10.1007/s10853-013-7575-3

    Article  Google Scholar 

  16. Yoo TW, Lee YK, Lim SJ, Yoon HG, Kim WN (2014) Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites. J Mater Sci 49:1701. doi:10.1007/s10853-013-7855-y

    Article  Google Scholar 

  17. Lee DW, Ma S, Lee KY (2013) Electrical and mechanical properties of carbon/glass hybridized long fiber reinforced polypropylene composites. Macromol Res 21:767

    Article  Google Scholar 

  18. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048

    Article  Google Scholar 

  19. Yan H, Kou K (2014) Enhanced thermoelectric properties in polyaniline composites with polyaniline-coated carbon nanotubes. J Mater Sci 49:1222. doi:10.1007/s1085-013-7804-9

    Article  Google Scholar 

  20. Li QF, Xu Y, Yoon JS, Chen GX (2011) Dispersions of carbon nanotubes/polyhedral oligomeric silsesquioxanes hybrids in polymer: the mechanical, electrical and EMI shielding properties. J Mater Sci 46:2324. doi:10.1007/s10853-010-5077-0

    Article  Google Scholar 

  21. Zheng J, Zhu Z, Qi J, Zhou Z, Li P, Peng M (2011) Preparation of isotactic polypropylene-grafted multiwalled carbon nanotubes (iPP-g-MWCNTs) by macroradical addition in solution and the properties of iPP-g-MWCNTs/iPP composites. J Mater Sci 46:648

    Article  Google Scholar 

  22. Goldel A, Kasaliwal G, Potschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly(styrene–acrylonitrile). Macromol Rapid Commun 30:423

    Article  Google Scholar 

  23. Zou H, Wang K, Zhang Q, Fu Q (2006) A change of phase morphology in poly(p-phenylene sulfide)/polyamide 66 blends induced by adding multi-walled carbon nanotubes. Polymer 47:7821

    Article  Google Scholar 

  24. Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of multiwalled carbon nanotubes in polycaprolactone/polylactide blend. Biomacromolecules 10:417

    Article  Google Scholar 

  25. Dai K, Xu XB, Li ZM (2007) Electrically conductive carbon black (CB) filled in situ microfibrillar poly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution. Polymer 48:849

    Article  Google Scholar 

  26. Potschke P, Pegel S, Claes M, Bonduel D (2008) A novel strategy to incorporate carbon nanotubes into thermoplastic matrices. Macromol Rapid Commun 29:244

    Article  Google Scholar 

  27. Bose S, Bhattacharyya AR, Kulkarni AR, Potschke P (2009) Multiwall carbon nanotubes prepared by melt blending. Compos Sci Tech 69:365

    Article  Google Scholar 

  28. Ko SW, Hong MK, Park BJ, Gupta RK, Choi HJ, Bhattaxharya SN (2009) Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites. Polym Bull 63:125

    Article  Google Scholar 

  29. Park DH, Kan TG, Lee YK, Kim WN (2013) Effect of multi-walled carbon nanotube dispersion on the electrical and rheological properties of poly(propylene carbonate)/poly(lactic acid)/multi-walled carbon nanotube composites. J Mater Sci 48:481. doi:10.1007/s10853-012-6762-y

    Article  Google Scholar 

  30. Joo J, Lee CY (2000) High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. J Appl Phys 88:513

    Article  Google Scholar 

  31. Colaneri NF, Shacklette LW (1992) EMI shielding measurements of conductive polymer blends. IEEE Trans Instrum Meas 41:291

    Article  Google Scholar 

  32. Lee JB, Lee YK, Choi GD, Na SW, Park TS, Kim WN (2011) Compatibilizing effects for improving mechanical properties of biodegradable poly(lactic acid) and polycarbonate blends. Polym Degrad Stab 96:553

    Article  Google Scholar 

  33. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265

    Article  Google Scholar 

  34. Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York

    Google Scholar 

  35. Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers. Elsevier, Amsterdam

    Google Scholar 

  36. Nuriel S, Liu L, Barber AH, Wagner HD (2005) Direct measurement of multiwall nanotube surface tension. Chem Phys Lett 404:263

    Article  Google Scholar 

  37. White DRJ (1971) EMI/EMC handbook series 4. Don White Consultants, Warrenton

    Google Scholar 

  38. Jafari SH, Potschke P, Stephan M, Warth H, Alberts H (2002) Multicomponent blends based on polyamide and styrenic polymers: morphology and melt rheology. Polymer 43:6985

    Article  Google Scholar 

  39. Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35:8825

    Article  Google Scholar 

Download references

Acknowledgements

This work (Grants No. C0102544) was supported by the Business for Cooperative R&D between Industry, Academy, and Research Institute funded by the Korea Small and Medium Business Administration in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Nyon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, IS., Lee, Y.K., Lee, H.S. et al. Effects of multi-walled carbon nanotube (MWCNT) dispersion and compatibilizer on the electrical and rheological properties of polycarbonate/poly(acrylonitrile–butadiene–styrene)/MWCNT composites. J Mater Sci 49, 4522–4529 (2014). https://doi.org/10.1007/s10853-014-8152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8152-0

Keywords

Navigation