Skip to main content
Log in

Ultra-smooth GaN membranes by photo-electrochemical etching for photonic applications

  • Interfaces and Intergranular Boundaries
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photo-electrochemical, bandgap selective, lateral etching is used to create 200 nm-thick, ultra-smooth GaN membranes, containing 10 pairs of GaN/AlGaN quantum wells. The use of electrolyte concentrations as low as 0.0004 M, along with appropriate excitation power and bias conditions, are shown to enhance the quality of freestanding membranes immensely, with an AFM roughness of 0.65 nm; the best ever reported value for GaN membranes fabricated using a similar technique. Transmission and photoluminescence experiments on these membranes were made possible at cryogenic temperatures by membrane transferring onto a double-side polished sapphire substrate, revealing pronounced excitonic features; the analysis of which strongly suggest that the absorption coefficients of GaN are at least 30 % higher than the values previously reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nakamura S (1999) InGaN-based violet laser diodes. Semicond Sci Technol 14:R27–R40. doi:10.1088/0268-1242/14/6/201

    Article  Google Scholar 

  2. Bandić ZZ, Bridger PM, Piquette EC et al (1999) High voltage (450 V) GaN Schottky rectifiers. Appl Phys Lett 74:1266. doi:10.1063/1.123520

    Article  Google Scholar 

  3. Muth JF, Lee JH, Shmagin IK et al (1997) Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl Phys Lett 71:2572. doi:10.1063/1.120191

    Article  Google Scholar 

  4. Sturge M (1962) Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys Rev 127:768–773. doi:10.1103/PhysRev.127.768

    Article  Google Scholar 

  5. Johnson WC, Parson JB, Crew MCC (1931) Nitrogen compounds of gallium III. J Phys Chem 36:2651–2654. doi:10.1021/j150340a015

    Article  Google Scholar 

  6. Adesida I, Mahajan A, Andideh E et al (1993) Reactive ion etching of gallium nitride in silicon tetrachloride plasmasa. Appl Phys Lett 63:2777. doi:10.1063/1.110331

    Article  Google Scholar 

  7. Pearton SJ (1993) Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy. J Vac Sci Technol A 11:1772. doi:10.1116/1.578423

    Article  Google Scholar 

  8. Shul RJ, McClellan GB, Casalnuovo Sa et al (1996) Inductively coupled plasma etching of GaN. Appl Phys Lett 69:1119. doi:10.1063/1.117077

    Article  Google Scholar 

  9. Ping AT, Adesida I, Asif Khan M (1995) Study of chemically assisted ion beam etching of GaN using HCl gas. Appl Phys Lett 67:1250. doi:10.1063/1.114387

    Article  Google Scholar 

  10. Youtsey C, Adesida I, Bulman G (1997) Highly anisotropic photo enhanced wet etching of n-type GaN. Appl Phys Lett 71:2151. doi:10.1063/1.119365

    Article  Google Scholar 

  11. Minsky MS, White M, Hu EL (1996) Room-temperature photo enhanced wet etching of GaN. Appl Phys Lett 68:1531. doi:10.1063/1.115689

    Article  Google Scholar 

  12. Haberer ED, Sharma R, Meier C et al (2004) Free-standing, optically pumped, GaN/InGaN microdisk lasers fabricated by photoelectrochemical etching. Appl Phys Lett 85:5179. doi:10.1063/1.1829167

    Article  Google Scholar 

  13. Youtsey C, Adesida I, Romano LT, Bulman G (1998) Smooth n-type GaN surfaces by photo enhanced wet etching. Appl Phys Lett 72:560. doi:10.1063/1.120758

    Article  Google Scholar 

  14. Peng L-H, Chuang C-W, Ho J-K et al (1998) Deep ultraviolet enhanced wet chemical etching of gallium nitride. Appl Phys Lett 72:939. doi:10.1063/1.120879

    Article  Google Scholar 

  15. Trichas E, Kayambaki M, Iliopoulos E et al (2009) Resonantly enhanced selective photochemical etching of GaN. Appl Phys Lett 94:173505. doi:10.1063/1.3122932

    Article  Google Scholar 

  16. Trichas E, Pelekanos NT, Iliopoulos E et al (2011) Bragg polariton luminescence from a GaN membrane embedded in all dielectric microcavity. Appl Phys Lett 98:221101. doi:10.1063/1.3595481

    Article  Google Scholar 

  17. Trichas E, Xenogianni C, Kayambaki M et al (2008) Selective photochemical etching of GaN films and laser lift-off for microcavity fabrication. Phys Status Solidi 205:2509–2512. doi:10.1002/pssa.200780215

    Article  Google Scholar 

  18. Shan W, Schmidt TJ, Yang XH et al (1995) Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor deposition. Appl Phys Lett 66:985. doi:10.1063/1.113820

    Article  Google Scholar 

  19. Shan W, Fischer aJ, Hwang SJ et al (1998) Intrinsic exciton transitions in GaN. J Appl Phys 83:455–461. doi:10.1063/1.366660

    Article  Google Scholar 

  20. Kornitzer K, Ebner T, Grehl M et al (1999) High-resolution photoluminescence and reflectance spectra of homoepitaxial GaN layers. Phys Status Solid 216:5–9

    Article  Google Scholar 

  21. Li CF, Huang YS, Malikova L, Pollak FH (1997) Temperature dependence of the energies and broadening parameters of the interband excitonic transitions in wurtzite GaN. Phys Rev B 55:9251–9254. doi:10.1103/PhysRevB.55.9251

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Initial Training Network ‘ICARUS’ and by the European Social Fund and National resources through the THALES programme ‘NANOPHOS’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaprakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaprakash, R., Kalaitzakis, F.G., Kayambaki, M. et al. Ultra-smooth GaN membranes by photo-electrochemical etching for photonic applications. J Mater Sci 49, 4018–4024 (2014). https://doi.org/10.1007/s10853-014-8071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8071-0

Keywords

Navigation