Skip to main content
Log in

Explaining the heat capacity of wood constituents by molecular vibrations

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The heat capacity of wood and its constituents is important for the correct evaluation of many of their thermodynamic properties, including heat exchange involved in sorption of water. In this study, the dry state heat capacity of cellulose, hemicelluloses and lignin are mathematically described by fundamental physical theories relating heat capacity with molecular vibrations. Based on knowledge about chemical structure and molecular vibrations derived from infrared and Raman spectroscopy, heat capacities are calculated and compared with experimental data from literature for a range of bio- and wood polymers in the temperature range 5–370 K. A very close correspondence between experimental and calculated results is observed, illustrating the possibility of linking macroscopic thermodynamic properties with their physical nano-scale origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Steinhagen HP (1977) Thermal conductive properties of wood, green or dry, from −40 °C to 100 °C—a literature review. General technical report FPL-9, USDA Forest Service, Madison, WI

  2. Hatakeyama T, Nakamura K, Hatakeyama H (1982) Studies on heat-capacity of cellulose and lignin by differential scanning calorimetry. Polymer 23:1801–1804

    Article  CAS  Google Scholar 

  3. Karachevtsev VG, Kozlov NA (1974) Study of thermodynamic properties of cellulose at low-temperatures. Vysokomol Soedin Ser A 16:1892–1897

    CAS  Google Scholar 

  4. Pyda M (2002) Conformational heat capacity of interacting systems of polymer and water. Macromolecules 35:4009–4016. doi:10.1021/ma0118466

    Article  CAS  ADS  Google Scholar 

  5. Pyda M, Bartkowiak M, Wunderlich B (1998) Computation of heat capacities of solids using a general Tarasov equation. J Therm Anal Calorim 52:631–656. doi:10.1023/a:1010188110516

    Article  CAS  Google Scholar 

  6. Wunderlich B (1997) The heat capacity of polymers. Thermochim Acta 300:43–65. doi:10.1016/s0040-6031(96)03126-7

    Article  CAS  Google Scholar 

  7. Wunderlich B (1995) The ATHAS database on heat-capacities of polymers. Pure Appl Chem 67:1019–1026. doi:10.1351/pac199567061019

    Article  CAS  Google Scholar 

  8. Einstein A (1906) The Planck theory of radiation and the theory of specific heat. Ann Phys Berlin 22:180–190

    Article  ADS  Google Scholar 

  9. Blackman M (1941) The theory of the specific heat of solids. Rep Prog Phys 8:11–30

    Article  ADS  Google Scholar 

  10. Debye P (1912) The theory of specific warmth. Ann Phys Berlin 39:789–839

    Article  CAS  MATH  ADS  Google Scholar 

  11. Sallamie N, Shaw JM (2005) Heat capacity prediction for polynuclear aromatic solids using vibration spectra. Fluid Phase Equilib 237:100–110. doi:10.1016/j.fluid.2005.07.022

    Article  CAS  Google Scholar 

  12. Tarasov VV (1952) Metasilicate chains and the theory of thermal capacity. Dokl Akad Nauk SSSR 84:321–324

    CAS  Google Scholar 

  13. Nernst W, Lindemann FA (1911) Specific heat and quantum theory. Z Elektrochem Angew P 17:817–827

    CAS  Google Scholar 

  14. Pan R, Nair MV, Wunderlich B (1989) On the c p to c v conversion of solid linear macromolecules II. J Therm Anal 35:955–966. doi:10.1007/bf02057252

    Article  CAS  Google Scholar 

  15. Pyda M, Wunderlich B (1999) Computation of heat capacities of liquid polymers. Macromolecules 32:2044–2050. doi:10.1021/ma9816620

    Article  CAS  ADS  Google Scholar 

  16. Loufakis K, Wunderlich B (1988) Computation of heat-capacity of liquid macromolecules based on a statistical mechanical approximation. J Phys Chem 92:4205–4209. doi:10.1021/j100325a042

    Article  CAS  Google Scholar 

  17. O’Reilly JM (1977) Conformational specific heat of polymers. J Appl Phys 48:4043–4048. doi:10.1063/1.323444

    Article  ADS  Google Scholar 

  18. Sjöström E (1993) Wood chemistry—fundamentals and applications, 2nd edn. Academic Press, San Diego, p 293

    Google Scholar 

  19. Di Lorenzo ML, Zhang G, Pyda M, Lebedev BV, Wunderlich B (1999) Heat capacity of solid-state biopolymers by thermal analysis. J Polym Sci Pol Phys 37:2093–2102. doi:10.1002/(sici)1099-0488(19990815)37:16<2093:aid-polb12>3.0.co;2-2

    Article  Google Scholar 

  20. Uryash VF, Rabinovich IB, Mochalov AN, Khlyustova TB (1985) Thermal and calorimetric analysis of cellulose, its derives and their mixtures with plasticizers. Thermochim Acta 93:409–412. doi:10.1016/0040-6031(85)85103-0

    Article  CAS  Google Scholar 

  21. Pyda M (2001) Conformational contribution to the heat capacity of the starch and water system. J Polym Sci Pol Phys 39:3038–3054. doi:10.1002/polb.10060

    Article  CAS  Google Scholar 

  22. Kaminski K, Kaminska E, Ngai KL, Paluch M, Wlodarczyk P, Kasprzycka A, Szeja W (2009) Identifying the origins of two secondary relaxations in polysaccharides. J Phys Chem B 113:10088–10096

    Article  PubMed  CAS  Google Scholar 

  23. Jafarpour G, Dantras E, Boudet A, Lacabanne C (2008) Molecular mobility of poplar cell wall polymers studied by dielectric techniques. J Noncryst Solids 354:3207–3214

    Article  CAS  ADS  Google Scholar 

  24. Roig F, Dantras E, Grima-Pettenatti J, Lacabanne C (2012) Analysis of gene mutation in plant cell wall by dielectric relaxation. J Phys D Appl Phys 45. doi:10.1088/0022-3727/45/29/295402

  25. Montes H, Mazeau K, Cavaille JY (1997) Secondary mechanical relaxations in amorphous cellulose. Macromolecules 30:6977–6984

    Article  CAS  ADS  Google Scholar 

  26. Montes H, Cavaille JY (1999) Secondary dielectric relaxations in dried amorphous cellulose and dextran. Polymer 40:2649–2657

    Article  CAS  Google Scholar 

  27. Montes H, Mazeau K, Cavaille JY (1998) The mechanical beta relaxation in amorphous cellulose. J Noncryst Solids 235:416–421. doi:10.1016/s0022-3093(98)00600-0

    Article  ADS  Google Scholar 

  28. Einfeldt J, Meissner D, Kwasniewski A (2004) Molecular interpretation of the main relaxations found in dielectric spectra of cellulose—experimental arguments. Cellulose 11:137–150. doi:10.1023/B:CELL.0000025404.61412.d6

    Article  CAS  Google Scholar 

  29. Obataya E, Norimoto M, Tomita B (2001) Mechanical relaxation processes of wood in the low-temperature range. J Appl Polym Sci 81:3338–3347

    Article  CAS  Google Scholar 

  30. Blokhin AV, Voitkevich OV, Kabo GJ, Paulechka YU, Shishonok MV, Kabo AG, Simirsky VV (2011) Thermodynamic properties of plant biomass components. Heat capacity, combustion energy, and gasification equilibria of cellulose. J Chem Eng Data 56:3523–3531. doi:10.1021/je200270t

    Article  CAS  Google Scholar 

  31. Ur’yash VF, Larina VN, Kokurina NY, Novoselova NV (2010) The thermochemical characteristics of cellulose and its mixtures with water. Russ J Phys Chem A 84:915–921. doi:10.1134/s0036024410060051

    Article  Google Scholar 

  32. Boerio-Goates J (1991) Heat-capacity measurements and thermodynamic functions of crystalline α-d-glucose at temperatures from 10 K to 340 K. J Chem Thermodyn 23:403–409. doi:10.1016/s0021-9614(05)80128-4

    Article  CAS  Google Scholar 

  33. Putnam RL, Boerio-Goates J (1993) Heat-capacity measurements and thermodynamic functions of crystalline sucrose at temperatures from 5 K to 342 K—revised values for ΔfGm (sucrose, cr, 298.15 K), ΔfGm (sucrose, aq, 298.15 K), Sm (sucrose, cr, 298.15 K); and ΔrGm (298.15 K) for the hydrolysis of aqueous sucrose. J Chem Thermodyn 25:607–613. doi:10.1006/jcht1993.1055

    Article  CAS  Google Scholar 

  34. da Silva MAVR, da Silva MDMCR, Ferreira AIMCL, Shi Q, Woodfield BF, Goldberg RN (2013) Thermochemistry of α-d-xylose(cr). J Chem Thermodyn 58:20–28. doi:10.1016/j.jct.2012.09.028

    Article  Google Scholar 

  35. Voitkevich OV, Kabo GJ, Blokhin AV, Paulechka YU, Shishonok MV (2012) Thermodynamic properties of plant biomass components. Heat capacity, combustion energy, and gasification equilibria of lignin. J Chem Eng Data 57:1903–1909. doi:10.1021/je2012814

    Article  CAS  Google Scholar 

  36. Goring DAI (1963) Thermal softening of lignin, hemicellulose and cellulose. Pulp Pap Mag Can 64:T517–T527

    CAS  Google Scholar 

  37. Orford PD, Parker R, Ring SG (1990) Aspects of the glass-transition behavior of mixtures of carbohydrate of low molecular-weight. Carbohydr Res 196:11–18. doi:10.1016/0008-6215(90)84102-z

    Article  PubMed  CAS  Google Scholar 

  38. Noel TR, Parker R, Ring SG (2000) Effect of molecular structure and water content on the dielectric relaxation behaviour of amorphous low molecular weight carbohydrates above and below their glass transition. Carbohydr Res 329:839–845. doi:10.1016/s0008-6215(00)00227-5

    Article  PubMed  CAS  Google Scholar 

  39. Liu YT, Bhandari B, Zhou WB (2006) Glass transition and enthalpy relaxation of amorphous food saccharides: a review. J Agric Food Chem 54:5701–5717. doi:10.1021/jf060188r

    Article  PubMed  CAS  Google Scholar 

  40. Paes SS, Sun SM, MacNaughtan W, Ibbett R, Ganster J, Foster TJ, Mitchell JR (2010) The glass transition and crystallization of ball milled cellulose. Cellulose 17:693–709. doi:10.1007/s10570-010-9425-7

    Article  CAS  Google Scholar 

  41. Chen W, Lickfield GC, Yang CQ (2004) Molecular modeling of cellulose in amorphous state. Part I: model building and plastic deformation study. Polymer 45:1063–1071

    Article  CAS  Google Scholar 

  42. Gierlinger N, Schwanninger M (2007) The potential of Raman microscopy and Raman imaging in plant research. Spectrosc Int J 21:69–89

    Article  CAS  Google Scholar 

  43. Gierlinger N, Burgert I (2006) Secondary cell wall polymers studied by confocal Raman microscopy: spatial distribution, orientation, and molecular deformation. New Zeal J For Sci 36:60–71

    CAS  Google Scholar 

  44. Blackwell J, Vasko PD, Koenig JL (1970) Infrared and Raman spectra of cellulose from cell wall of Valonia ventricosa. J Appl Phys 41:4375–4379

    Article  CAS  ADS  Google Scholar 

  45. Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeter Biodegr 52:151–160

    Article  CAS  Google Scholar 

  46. Colom X, Carrillo F, Nogues F, Garriga P (2003) Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stab 80:543–549. doi:10.1016/s0141-3910(03)00051-x

    Article  CAS  Google Scholar 

  47. Salmen L, Åkerholm M, Hinterstoisser B (2005) Two-dimensional Fourier transform infrared spectroscopy applied to cellulose and paper. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York, pp 159–187

    Google Scholar 

  48. Hofstetter K, Hinterstoisser B, Salmen L (2006) Moisture uptake in native cellulose—the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose 13:131–145

    Article  CAS  Google Scholar 

  49. Edwards HGM, Farwell DW, Williams AC (1994) FT-Raman spectrum of cotton—a polymeric biomolecular analysis. Spectrochim Acta A 50:807–811. doi:10.1016/0584-8539(94)80016-2

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper is a result of work done while the author was employed at the Department of Civil Engineering, Technical University of Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Engelund Thybring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thybring, E.E. Explaining the heat capacity of wood constituents by molecular vibrations. J Mater Sci 49, 1317–1327 (2014). https://doi.org/10.1007/s10853-013-7815-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7815-6

Keywords

Navigation