Skip to main content
Log in

Fabrication, nanostructure evaluation, 3D electrical transport and electrochemical capacitance of PEDOT–Ti(IV)-doped iron(III) oxide nanocomposite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly[3,4-(ethylenedioxy)thiophene] (PEDOT) nanocomposites (NCs) reinforced by varying titanium(IV)-doped iron(III) nano oxide (NITO) particles have been fabricated in dodecylbenzene sulphonic acid by in situ polymerization process using ammonium perdisulfate as initiator. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, electron microscopy, BET surface analysis etc. followed by subsequent evaluation of thermal properties, temperature-dependent 3D electrical transport. Thermal stability of the NCs increased with increasing NITO amount in PEDOT matrix. Electrical conductivity of the NCs increased significantly with increasing NITO content (0.45–67.73 S cm−1) and also with the temperature (50–300 K). 3D variable range hopping conduction mechanism explained the conduction pathways. Specific capacitance of NCs are enhanced with higher NITO content in polymer from 107 F g−1 (pristine PEDOT) to 158 F g−1 (NC) owing to the development of mesoporous (pore size: 4.1 nm and cylindrical pore volume: 0.103 cm3 g−1) structure and high specific surface area (~104 m2 g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cruz-Silva R, Romero-Garcia J, Angulo Sanchez JL (2005) J Mater Sci 40(18):5107. doi:10.1007/s10853-005-1687-3

    Article  CAS  ADS  Google Scholar 

  2. Vishnuvardhan TK, Kulkarni VR, Basavaraja C, Raghavendra SC (2006) Bull Mater Sci 29(1):77

    CAS  Google Scholar 

  3. De A, Sen P, Poddar A, De A (2009) Synth Met 159:1002

    Article  CAS  Google Scholar 

  4. Kang HC, Geekeler KE (2000) Polymer 41:6931

    Article  CAS  Google Scholar 

  5. Long YZ, Li MM, Gu C, Wan M, Duvail JL, Liu Z, Fan Z (2011) Prog Polym Sci 36:1415

    Article  CAS  Google Scholar 

  6. Nandi D, Ghosh AK, Gupta K, De A, Sen P, Duttachowdhury A, Ghosh UC (2012) Mater Res Bull 47:2095

    Article  CAS  Google Scholar 

  7. Mavinakuli P, Wei S, Wang Q, Karki AB, Dhage S, Wang Z, Young DP, Guo Z (2010) J Phys Chem C 114:3874

    Article  CAS  Google Scholar 

  8. Bayer AG (1988) Euro Patent 339340

  9. Pei Q, Zuccarello G, Ahskog M, Inganäs O (1994) Polymer 35:1347

    Article  CAS  Google Scholar 

  10. Reynolds JR, Kumar A, Reddinger JL, Sankaran B, Sapp SA, Sotzing GA (1997) Synth Met 85:1295

    Article  CAS  Google Scholar 

  11. Lee HJ, Lee J, Park SM (2010) J Phys Chem B 114:2660

    Article  PubMed  CAS  Google Scholar 

  12. Wang Y (2009) J Phys: Conf Ser 152:012023

    ADS  Google Scholar 

  13. Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V (2008) Mater Lett 62:571

    Article  CAS  Google Scholar 

  14. Murugan AV, Gopinath CS, Vijayamohanan K (2005) Electrochem Commun 7:213

    Article  CAS  Google Scholar 

  15. Peng C, Jin J, Chen GZ (2007) Electrochim Acta 53:525

    Article  CAS  Google Scholar 

  16. Zhang DF, Sun LD, Yin JL, Yan CH (2003) Adv Mater 15:1022

    Article  CAS  Google Scholar 

  17. Gangopadhyay R, De A (2000) Chem Mater 12:608

    Article  CAS  Google Scholar 

  18. Robert ME (2009) Mater Chem 19:6977

    Article  Google Scholar 

  19. Nystrom G, Razaq A, Stromme M, Nyholm L, Mihranyan A (2009) Nano Lett 9:3635

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  20. Mani R, Achary SN, Chakraborty KR, Deshpande SK, Joy JE, Nag A, Gopalakrishnan J, Tyagi AK (2008) Adv Mater 20:1348

    Article  CAS  Google Scholar 

  21. Sen P, De A (2010) Electrochim Acta 55:4677

    Article  CAS  Google Scholar 

  22. Streethawong T, Ngamsinlapasathian S, Yoshikawa S (2013) Mater Res Bull 48:30

    Article  Google Scholar 

  23. Maeda S, Armes SP (1995) Synth Met 73:151

    Article  CAS  Google Scholar 

  24. Glisenti A (2000) J Mol Cat A 153:169

    Article  CAS  Google Scholar 

  25. Kvarnstrom C, Neugebauer H, Blomquist S, Ahonen JH, Kankare J, Ivaska A, Sariciftci NS (1999) Synth Met 101:66

    Article  CAS  Google Scholar 

  26. Kvarnstrom C, Neugebauer H, Ivaska A, Sariciftci NS (2000) J Mol Struct 521:271

    Article  CAS  ADS  Google Scholar 

  27. Damlin P, Kvarnstrom C, Ivaska A (2004) J Electroanal Chem 570:113

    Article  CAS  Google Scholar 

  28. Gangopadhyay R, De A (1999) Eur Polym J 35:1985

    Article  CAS  Google Scholar 

  29. Rubinger CPL, Costa LC, Esteves ACC, Barros-Timmons A, Martins A (2008) J Mater Sci 43:3333

    Article  CAS  ADS  Google Scholar 

  30. Gangopadhyay R, De A, Das S (2000) J Appl Phys 87:2363

    Article  CAS  ADS  Google Scholar 

  31. Fritzsche H (1974) Amorphous semiconductors. Plenum, New York, p 233

    Google Scholar 

  32. Rudel R, Zite-Ferenczy F (1979) J Physiol 290:317

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Anderman M (2005) The ultracapacitor opportunity report, Advanced automotive batteries

  34. Reddy RN, Reddy RG (2003) J Power Source 124:330

    Article  CAS  ADS  Google Scholar 

  35. Yang Y, Zhang L, Li S, Yang W, Xu J, Jiang Y, Wen J (2013) J Mater Sci Mater Electron. doi:10.1007/s10854-013-1086-5

    Google Scholar 

Download references

Acknowledgements

Authors sincerely acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi (INDIA) for providing financial support of this work, and also the Head, Department of Chemistry and the Vice-Chancellor of Presidency University, Kolkata for laboratory facilities. Authors are also thankful to Dr. A. Nayek, Department of Physics of Presidency University for helping with X-ray diffraction analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debabrata Nandi or Uday Chand Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandi, D., Ghosh, A.K., De, A. et al. Fabrication, nanostructure evaluation, 3D electrical transport and electrochemical capacitance of PEDOT–Ti(IV)-doped iron(III) oxide nanocomposite. J Mater Sci 49, 776–785 (2014). https://doi.org/10.1007/s10853-013-7760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7760-4

Keywords

Navigation