Skip to main content
Log in

Thermal stability and mechanical properties of nanocrystalline Fe–Ni–Zr alloys prepared by mechanical alloying

Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal stability of nanostructured Fe100−xy Ni x Zr y alloys with Zr additions up to 4 at.% was investigated. This expands upon our previous results for Fe–Ni base alloys that were limited to 1 at.% Zr addition. Emphasis was placed on understanding the effects of composition and microstructural evolution on grain growth and mechanical properties after annealing at temperatures near and above the bcc-to-fcc transformation. Results reveal that microstructural stability can be lost due to the bcc-to-fcc transformation (occurring at 700 °C) by the sudden appearance of abnormally grown fcc grains. However, it was determined that grain growth can be suppressed kinetically at higher temperatures for high Zr content alloys due to the precipitation of intermetallic compounds. Eventually, at higher temperatures and regardless of composition, the retention of nanocrystallinity was lost, leaving behind fine micron grains filled with nanoscale intermetallic precipitates. Despite the increase in grain size, the in situ formed precipitates were found to induce an Orowan hardening effect rivaling that predicted by Hall–Petch hardening for the smallest grain sizes. The transition from grain size strengthening to precipitation strengthening is reported for these alloys. The large grain size and high precipitation hardening result in a material that exhibits high strength and significant plastic straining capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskes LJ, Mathaudhu SN (2011) Mater Sci Eng A 528(13–14):4365

    Google Scholar 

  2. Darling KA, VanLeeuwen BK, Koch CC, Scattergood RO (2010) Mater Sci Eng A 527(15):3572

    Article  Google Scholar 

  3. Kirchheim R (2007) Acta Mater 55(15):5129

    Article  CAS  Google Scholar 

  4. Liu F, Kirchheim R (2004) Scripta Mater 51(6):521

    Article  CAS  Google Scholar 

  5. Trelewicz JR, Schuh CA (2009) Phys Rev B 79(9):094112

    Article  Google Scholar 

  6. Saber M, Kotan H, Koch CC, Scattergood RO (2013) J Appl Phys 113(6):063515

    Article  Google Scholar 

  7. Millett PC, Selvam RP, Saxena A (2007) Acta Mater 55(7):2329

    Article  CAS  Google Scholar 

  8. Dake JM, Krill CE (2012) Scripta Mater 66(6):390

    Article  CAS  Google Scholar 

  9. Kotan H, Darling KA, Saber M, Scattergood RO, Koch CC (2013) J Mater Sci 48(5):2251. doi:10.1007/s10853-012-7002-1

    Article  CAS  Google Scholar 

  10. Saber M, Kotan H, Koch CC, Scattergood RO (2013) A predictive model for thermodynamic stability of grain size in ternary alloys (submitted)

  11. Cohen MU (1935) Rev Sci Instrum 6(3):68

    Article  Google Scholar 

  12. Langford JI, Wilson AJC (1978) J Appl Crystallogr 11:102

    Article  CAS  Google Scholar 

  13. Williamson GK, Hall WH (1953) Acta Metal 1(1):22

    Article  CAS  Google Scholar 

  14. Guduru RK, Darling KA, Kishore R, Scattergood RO, Koch CC, Murty KL (2005) Mater Sci Eng A 395(1–2):307

    Google Scholar 

  15. Malow TR, Koch CC (1997) Acta Mater 45(5):2177

    Article  CAS  Google Scholar 

  16. Kotan H, Saber M, Koch CC, Scattergood RO (2012) Mater Sci Eng A 552:310

    Article  CAS  Google Scholar 

  17. Schramm RE, Reed RP (1976) Metall Trans A 7(3):359

    Article  Google Scholar 

  18. Shen TD, Schwarz RB, Feng S, Swadener JG, Huang JY, Tang M, Zhang H, Vogel SC, Zhao YS (2007) Acta Mater 55(15):5007

    Article  CAS  Google Scholar 

  19. Murray JL (1992) Binary phase diagram. ASM International, Metals Park, OH

    Google Scholar 

  20. Raghavan V (2009) J Phase Equilib 30(1):104

    Article  CAS  Google Scholar 

  21. Hillert M (1965) Acta Metall 13(3):227

    Article  CAS  Google Scholar 

  22. Gladman T (1966) Proc R Soc Lond Ser A 294(1438):298

    Article  CAS  Google Scholar 

  23. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, Oxford

    Google Scholar 

  24. Kotan H, Darling KA, Saber M, Koch CC, Scattergood RO (2013) J Alloys Compd 551:621

    Article  CAS  Google Scholar 

  25. Guduru RK, Scattergood RO, Koch CC, Murty KL, Guruswamy S, McCarter MK (2006) Scripta Mater 54(11):1879

    Article  CAS  Google Scholar 

  26. Stephens JR, Witzke WR (1976) J Less-Common Met 48(2):285

    Article  CAS  Google Scholar 

  27. Labusch R (1970) Phys Status Solidi 41(2):659

    Article  Google Scholar 

  28. Schmauder S, Kohler C (2011) Comput Mater Sci 50(4):1238

    Article  CAS  Google Scholar 

  29. Jang D, Atzmon M (2006) J Appl Phys 99(8):083504

    Article  Google Scholar 

  30. Gleiter H (1992) Adv Mater 4(7–8):474

    Article  CAS  Google Scholar 

  31. Koch CC, Weertman J (2002) Nanostructured materials. Noyes Publications, Norwich

    Google Scholar 

  32. Rupert TJ, Trelewicz JR, Schuh CA (2012) J Mater Res 27(9):1285

    Article  CAS  Google Scholar 

  33. Nazarov AA (2000) Interface Sci 8(4):315

    Article  CAS  Google Scholar 

  34. Das N, Sengupta P, Roychowdhury S, Sharma G, Gawde PS, Arya A, Kain V, Kulkarni UD, Chakravartty JK, Dey GK (2012) J Nucl Mater 420(1–3):559

    Article  CAS  Google Scholar 

  35. Stein F, Palm A, Sauthoff G (2005) Intermetallics 13(10):1056

    Article  CAS  Google Scholar 

  36. Brailsford AD, Wynblatt P (1979) Acta Metall 27(3):489

    Article  CAS  Google Scholar 

  37. Arzt E (1998) Acta Mater 46(16):5611

    Article  CAS  Google Scholar 

  38. Bacon DJ, Kocks UF, Scatterg RO (1973) Philos Mag 28(6):1241

    Article  Google Scholar 

  39. Ferguson JB, Lopez H, Kongshaug D, Schultz B, Rohatgi P (2012) Metall Mater Trans A 43(6):2110

    Article  CAS  Google Scholar 

  40. Gladman T (1999) Mater Sci Technol 15(1):30

    Article  CAS  Google Scholar 

  41. Palm M (2005) Intermetallics 13(12):1286

    Article  CAS  Google Scholar 

  42. Morris DG, Munoz-Morris MA, Requejo LM, Baudin C (2006) Intermetallics 14(10–11):1204

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research reported in this paper was supported by NSF-DMR under Grant Number 1005677.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Kotan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotan, H., Darling, K.A., Saber, M. et al. Thermal stability and mechanical properties of nanocrystalline Fe–Ni–Zr alloys prepared by mechanical alloying. J Mater Sci 48, 8402–8411 (2013). https://doi.org/10.1007/s10853-013-7652-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7652-7

Keywords

Navigation