Skip to main content
Log in

Synthesis of nickel picrate energetic film in a 3D ordered silicon microchannel plate through an in situ chemical reaction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Micro-energetic devices with energetic and functional diversity have attracted interest from scientific communities, through features such as the integration of energetic materials into micro-electro-mechanical systems (MEMS). In this study, a method for the preparation of nickel picrate energetic films on the sidewalls of a silicon microchannel plate (Si-MCP) is presented. The Si-MCP was produced by a photoelectrochemical process and a thin film of nickel (Ni) was synthesized by electroless plating of Ni on the sidewalls of the Si-MCP. The thin film of nickel picrate was successfully produced via an in situ chemical reaction method by introducing picric acid into the 3D ordered nickel/silicon microchannel plate (Ni/Si-MCP). Field emission scanning electron microscopy, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy were used to study the morphological and structural properties of the thin film. The results demonstrate that picric acid reacted with Ni to form a nickel picrate thin film. Also, differential scanning calorimetry and thermogravimetric analysis were employed to characterize the thermal decomposition of the energetic film. The approach can solve the problem of integrating organic energetic materials with MEMS devices. Also, nickel picrate can release a mass of energy and gas simultaneously, which further enhances the functional diversity of MEMS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chou SK, Yang WM, Chua KJ, Li J, Zhang KL (2011) Appl Energy 88(1):1

    Article  CAS  Google Scholar 

  2. Kim SH, Zachariah MR (2004) Adv Mater 16(20):1821

    Article  CAS  Google Scholar 

  3. Reddy BSB, Das K, Das S (2007) J Mater Sci 42(22):9366. doi:10.1007/s10853-007-1827-z

    Article  CAS  Google Scholar 

  4. Yang Y, Xu D, Zhang K (2012) J Mater Sci 47(3):1296. doi:10.1007/s10853-011-5903-z

    Article  CAS  Google Scholar 

  5. Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C (2007) J Microelectromech Syst 16(4):919

    Article  CAS  Google Scholar 

  6. Prakash A, McCormick AV, Zachariah MR (2005) Adv Mater 17(7):900

    Article  CAS  Google Scholar 

  7. Blobaum KJ, Reiss ME, Plitzko JM, Weihs TP (2003) J Appl Phys 94(5):2915

    Article  CAS  Google Scholar 

  8. Adams D, Hodges V, Bai M, Jones E, Rodriguez M, Buchheit T, Moore J (2008) J Appl Phys 104(4):043502

    Article  Google Scholar 

  9. Adams D, Rodriguez M, Tigges C, Kotula P (2006) J Mater Res 21(12):3168

    Article  CAS  Google Scholar 

  10. Morris CJ, Mary B, Zakar E, Barron S, Fritz G, Knio O, Weihs TP, Hodgin R, Wilkins P, May C (2010) J Phys Chem Solids 71(2):84

    Article  CAS  Google Scholar 

  11. Ohkura Y, Liu SY, Rao PM, Zheng X (2011) Proc Combust Inst 33(2):1909

    Article  CAS  Google Scholar 

  12. Fischer SH, Grubelich MC (1996) A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications. Paper presented at the AIAA/ASME/SAE/ASEE Joint propulsion conference, Lake Buena Vista, FL

  13. Matsukawa M, Matsunaga T, Yoshida M, Fujiwara S (2004) Sci Technol Energy Mater 65(1):1

    CAS  Google Scholar 

  14. Teasdale D, Milanovic V, Chang P, Pister KSJ (2001) Smart Mater Struct 10:1145

    Article  CAS  Google Scholar 

  15. Zhang W, Peng H, Gao X, Ye J, Zhang Z, Chao Y (2012) Surf Interface Anal 44(8):1203

    Article  CAS  Google Scholar 

  16. Lewis DH Jr, Janson SW, Cohen RB, Antonsson EK (2000) Sens Actuator A 80(2):143

    Article  CAS  Google Scholar 

  17. Jin X, Hu Y, Wang Y, Shen R, Ye Y, Wu L, Wang S (2012) Appl Surf Sci 258(7):2977

    Article  CAS  Google Scholar 

  18. Zhang K, Rossi C, Alphonse P, Tenailleau C, Cayez S, Chane-Ching J-Y (2008) Appl Phys A 94(4):957

    Article  Google Scholar 

  19. Miao F, Tao B (2011) Electrochim Acta 56(19):6709

    Article  CAS  Google Scholar 

  20. Chen X, Lin J, Yuan D, Ci P, Xin P, Xu S, Wang L (2008) J Micromech Microeng 18(3):037003

    Article  Google Scholar 

  21. Brill T, Zhang T, Tappan B (2000) Combust Flame 121(4):662

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation of China (NSFC, Grant Nos. 50806033 and 61176108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Chao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Xu, B., Wang, L. et al. Synthesis of nickel picrate energetic film in a 3D ordered silicon microchannel plate through an in situ chemical reaction. J Mater Sci 48, 8302–8307 (2013). https://doi.org/10.1007/s10853-013-7643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7643-8

Keywords

Navigation