Skip to main content
Log in

Facile preparation of nitrogen-doped reduced graphene oxide as a metal-free catalyst for oxygen reduction reaction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electronic and chemical properties of reduced graphene oxide (RGO) can be modulated by chemical doping foreign atoms and functional moieties. Nitrogen-doped reduced graphene oxide (N-RGO) is a promising candidate for oxygen reduction reaction (ORR) in fuel cells. However, there are still some challenges in further preparation and modification of N-RGO. In this work, a low-cost industrial material, urea, was chosen to modify RGO by a facile, catalyst-free thermal annealing approach in large scale. The obtained N-RGO, as a metal-free catalyst for oxygen reduction was characterized by XRD, XPS, Raman, SEM, TEM, and electrochemical measurements. It was found that the optimum synthesis conditions were a mass ratio of graphene oxide and urea equal to 1:10 and an annealing temperature of 800 °C. Detailed X-ray photoelectron spectrum analysis of the optimum product shows that the atomic percentage of N-RGO samples can be adjusted up to 2.6 %, and the resultant product can act as an efficient metal-free catalyst, exhibiting enhanced electrocatalytic properties for ORR in alkaline electrolytes. This simple, cost-effective, and scalable approach opens up the possibility for the synthesis of other nitrogen doping materials in gram-scale. It can be applied to various carbon materials for the development of other metal-free efficient ORR catalysts for fuel cell applications, and even new catalytic materials for applications beyond fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nagaiah TC, Kundu S, Bron M (2010) Electrochem Commun 12:338

    Article  CAS  Google Scholar 

  2. Ma Y, Sun L, Huang W (2011) J Phys Chem C 115:24592

    Article  CAS  Google Scholar 

  3. Yang S, Feng X, Wang X (2011) Angew Chem Int Ed Engl 50:5339

    Article  CAS  Google Scholar 

  4. Li H, Liu H, Jong Z (2011) Int J Hydrogen Energ 36:2258

    Article  CAS  Google Scholar 

  5. Wang S, Yu D, Dai L (2011) J Am Chem Soc 133:5182

    Article  CAS  Google Scholar 

  6. Wang H, Bo X, Luhana C (2011) Electrochem Commun 21:5

    Article  Google Scholar 

  7. Xiao W, Wang D, Lou XW (2010) J Phys Chem C 114:1694

    Article  CAS  Google Scholar 

  8. Lefe M, Dodelet JP, Bertrand P (2002) J Phys Chem B 106:8705

    Article  Google Scholar 

  9. Ma G, Jia R, Zhao J (2011) J Phys Chem C 115:25148

    Article  CAS  Google Scholar 

  10. Zheng B, Wang J, Wang FB (2013) Electrochem Commun 28:24

    Article  CAS  Google Scholar 

  11. Yang Z, Yao Z, Li GF (2011) ACS Nano 6:205

    Article  CAS  Google Scholar 

  12. Sheng ZH, Gao HL, Bao WJ (2012) J Mater Chem 22:390

    Article  CAS  Google Scholar 

  13. Kwon OS, Park SJ, Hong JY (2012) ACS Nano 6:1486

    Article  CAS  Google Scholar 

  14. Tsai CW, Tu MH, Chen CJ (2011) RSC Adv 1:1349

    Article  CAS  Google Scholar 

  15. Yang SY, Chang KH, Huang YL (2012) Electrochem Commun 14:39

    Article  Google Scholar 

  16. Sheng Z, Shao L, Chen J (2011) ACS Nano 5:4350

    Article  CAS  Google Scholar 

  17. Lin Z, Waller G, Liu Y (2012) Adv Energy Mater 2:884

    Article  CAS  Google Scholar 

  18. Sun Y, Wu Q, Shi G (2011) Energ Environ Sci 4:1113

    Article  CAS  Google Scholar 

  19. Wang S, Yu D, Dai L (2011) ACS Nano 5:6202

    Article  CAS  Google Scholar 

  20. Lee SU, Belosludov RV, Mizuseki H (2009) Small 5:1769

    Article  CAS  Google Scholar 

  21. Qu L, Liu Y, Baek JB (2010) ACS Nano 4:1321

    Article  CAS  Google Scholar 

  22. Liu RL, Wu DQ, Feng XL, Müllen K (2010) Angew Chem Int Ed 49:2565

    Article  CAS  Google Scholar 

  23. Hummers WS, Offeman RB (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  24. Zhao B, Liu P, Jiang Y, Pan D (2012) J Power Sources 198:423

    Article  CAS  Google Scholar 

  25. Lee KR, Lee KU, Lee JW (2010) Electrochem Commun 12:1052

    Article  CAS  Google Scholar 

  26. Geng DS, Yang SL, Zhang Y (2011) Appl Surf Sci 257:9193

    Article  CAS  Google Scholar 

  27. Srinivas G, Zhu YW, Piner R, Skipper N, Ellerby M, Ruoff R (2010) Carbon 48:630

    Article  CAS  Google Scholar 

  28. Chen P, Xiao TY, Li HH (2012) ACS Nano 6:712

    Article  CAS  Google Scholar 

  29. Mao Y, Duan H, Xu B, Zhang L (2012) Energ Environ Sci 5:7950

    Article  CAS  Google Scholar 

  30. Zhang CZ, Hao R, Liao HB (2013) Nano Energ 2:88

    Article  CAS  Google Scholar 

  31. Sun L, Wang L, Tian C (2012) RSC Adv 2:4498

    Article  CAS  Google Scholar 

  32. Lin Z, Song MK, Ding Y (2012) Phys Chem Chem Phys 14:3381

    Article  CAS  Google Scholar 

  33. Zhu S, Chen Z, Li B (2011) Electrochim Acta 56:5080

    Article  CAS  Google Scholar 

  34. Geng DS, Liu H, Chen YG (2011) J Power Sources 196:1795

    Article  CAS  Google Scholar 

  35. Yang W, Fellinger TP, Antonietti M (2011) J Am Chem Soc 133:206

    Article  CAS  Google Scholar 

  36. Zhou X, Yang Z, Nie H (2011) J Power Sources 196:9970

    Article  CAS  Google Scholar 

  37. Luo Z, Lim S, Tian Z (2011) J Mater Chem 21:8038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (21063014 and 21163021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Juan Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, ZJ., Xu, MW., Bao, SJ. et al. Facile preparation of nitrogen-doped reduced graphene oxide as a metal-free catalyst for oxygen reduction reaction. J Mater Sci 48, 8101–8107 (2013). https://doi.org/10.1007/s10853-013-7622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7622-0

Keywords

Navigation