Skip to main content
Log in

Prediction on viscoelastic properties of three-dimensionally braided composites by multi-scale model

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three-dimensional viscoelastic properties of four-step three-dimensionally (3D) braided composites are studied in this paper. Based on the three-cell division scheme, a multi-scale model for 3D braided composites is proposed. A periodic boundary condition is applied to characterize the periodic structure of 3D braided composites and yarns. Given the viscoelastic parameters of resin matrix and the elastic constants of fibers, the viscoelastic properties of yarns are obtained by the finite element method and Prony Series fitting. The three-dimensional viscoelastic constitutive relationship of interior cells is derived based upon the viscoelastic properties of yarns and resin matrix. Moreover, the viscoelasticity of 3D braided composites is studied by creep experiment. The viscoelastic deformation obtained from the multi-scale method agrees well with the experimental results. The influence of the two independent micro-structural parameters, braiding angles, and fiber volume fractions, on the viscoelastic properties of 3D braided composites is investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ko FK, Pastore CM (1985) In: Vinson JR, Taya M (eds) Recent advances in composites in the United States and Japan. American Society for Testing Material, Philadelphia, p 428

    Chapter  Google Scholar 

  2. Yang JM, Ma CL, Chou TW (1986) J Compos Mater 20:472

    Article  CAS  Google Scholar 

  3. Wu DL (1996) Compos Sci Technol 56:225

    Article  CAS  Google Scholar 

  4. Chen L, Tao XM, Choy CL (1999) Compos Sci Technol 59:2383

    Article  Google Scholar 

  5. Ma CL, Yang JM, Chou TW (1986) In: Composite materials: testing and design (seventh conference), ASTM STP 893 p 404

  6. Byun JH, Du GW, Chou TW (1991) In: High-tech fibrous materials (ACS symposium series 457) p 22

  7. Sun HY, Qiao X (1997) Compos Sci Technol 57:623

    Article  CAS  Google Scholar 

  8. Sun BZ, Gu BH (2007) J Mater Sci 42:2463. doi:10.1007/s10853-006-1295-x

    Article  CAS  Google Scholar 

  9. Tang ZX, Postle R (2001) Compos Struct 51:451

    Article  Google Scholar 

  10. Sun HY, Di SL, Zhang N, Pan N, Wu CC (2003) Comput Struct 81:2021

    Article  Google Scholar 

  11. Zeng T, Fang DN, Ma L, Guo LC (2004) Mater Lett 58:3237

    Article  CAS  Google Scholar 

  12. Xu K, Xu XW (2008) Mater Sci Eng, A 487:499

    Article  Google Scholar 

  13. Chen ZR, Zhu DC, Meng L, Lin Y (1999) Compos Struct 47:477

    Article  Google Scholar 

  14. Feng ML, Wu CC (2001) Compos Sci Technol 61:1889

    Article  Google Scholar 

  15. Yu XG, Cui JZ (2007) Compos Sci Technol 67:471

    Article  CAS  Google Scholar 

  16. Dong JW, Feng ML (2010) Compos Struct 92:873

    Article  Google Scholar 

  17. Brinson LC, Knauss WG (1991) J Mech Phys Solids 39:859

    Article  Google Scholar 

  18. Koishi M, Shiratori M, Miyoshi T, Kabe K (1997) JSME Int J, Ser A 40:306

    Article  Google Scholar 

  19. Chung PW, Tamma KK, Namburu RR (2000) Compos Sci Technol 60:2233

    Article  CAS  Google Scholar 

  20. Seifert OE, Schumacher SC, Hansen AC (2003) Compos B 34:571

    Article  Google Scholar 

  21. Lévesque M, Derrien K, Mishnaevski L Jr, Baptiste D, Gilchrist MD (2004) Compos A 35:905

    Article  Google Scholar 

  22. Liu JY, Chen L, Li DS, Li JL (2004) J Tianjin Poly Univ 23:13

    CAS  Google Scholar 

  23. Li DS, Li JL, Chen L, Lu ZX (2006) J Aero Mater 26:76

    Google Scholar 

  24. Chen L, Tao XM, Choy CL (1999) Compos Sci Technol 59:391

    Article  CAS  Google Scholar 

  25. Xia ZH, Zhang YF, Fernand E (2003) Int J Solids Struct 40:1907

    Article  Google Scholar 

  26. Chang CY, Liu ST, Wang CG (2006) Chin J Comput Mech 23:414

    Google Scholar 

  27. Zhou CW, Zhang YX (2007) Acta Mater Compos Sini 24:125

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (10972101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyu Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Y., Sun, H. Prediction on viscoelastic properties of three-dimensionally braided composites by multi-scale model. J Mater Sci 48, 6499–6508 (2013). https://doi.org/10.1007/s10853-013-7524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7524-1

Keywords

Navigation