Skip to main content
Log in

Grain size effect on deformation twinning and detwinning

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article systematically overviews the grain size effect on deformation twinning and detwinning in face-centered cubic (fcc) metals. With decreasing grain size, coarse-grained fcc metals become more difficult to deform by twinning, whereas nanocrystalline (nc) fcc metals first become easier to deform by twinning and then become more difficult, exhibiting an optimum grain size for twinning. The transition in twinning behavior from coarse-grained to nc fcc metals is caused by the change in deformation mechanisms. An analytical model based on observed deformation physics in nc metals, i.e., grain boundary emission of dislocations, provides an explanation of the observed optimum grain size for twinning in nc fcc metals. The detwinning process is caused by the interaction between dislocations and twin boundaries. Under a certain deformation condition, there exists a grain size range where the twinning process dominates over the detwinning process to produce the highest density of twins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    Article  CAS  Google Scholar 

  2. Zhu YT, Liao XZ (2004) Nat Mater 3:351

    Article  CAS  Google Scholar 

  3. Wang YM, Chen MW, Zhou FH, Ma E (2002) Nature 419:912

    Article  CAS  Google Scholar 

  4. Horita Z, Ohashi K, Fujita T, Kaneko K, Langdon TG (2005) Adv Mater 17:1599

    Article  CAS  Google Scholar 

  5. Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Scr Mater 54:251

    Article  CAS  Google Scholar 

  6. Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT (2006) Adv Mater 18:2280

    Article  CAS  Google Scholar 

  7. Zhao YH, Bingert JE, Liao XZ, Cui BZ, Han K, Sergueeva AV, Mukherjee AK, Valiev RZ, Langdon TG, Zhu YT (2006) Adv Mater 18:2949

    Article  CAS  Google Scholar 

  8. Zhao YH, Bingert JF, Zhu YT, Liao XZ, Valiev RZ, Horita Z, Langdon TG, Zhou YZ, Lavernia EJ (2008) Appl Phys Lett 92:081903

    Article  Google Scholar 

  9. Zhao YH, Zhu YT, Liao XZ, Horita Z, Langdon TG (2006) Appl Phys Lett 89:121906

    Article  Google Scholar 

  10. Zhao YH, Liao XZ, Horita Z, Langdon TG, Zhu YT (2008) Mater Sci Eng A 493:123

    Article  Google Scholar 

  11. Sun PL, Zhao YH, Cooley JC, Kassner ME, Horita Z, Langdon TG, Lavernia EJ, Zhu YT (2009) Mater Sci Eng A 525:83

    Article  Google Scholar 

  12. Youssef K, Sakaliyska M, Bahmanpour H, Scattergood R, Koch C (2011) Acta Mater 59:5758

    Article  CAS  Google Scholar 

  13. Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Appl Phys Lett 87:091904

    Article  Google Scholar 

  14. An XH, Han WZ, Huang CX, Zhang P, Yang G, Wu SD, Zhang ZF (2008) Appl Phys Lett 92:201915

    Article  Google Scholar 

  15. Christian JW, Mahajan S (1995) Prog Mater Sci 39:1

    Article  Google Scholar 

  16. Zhu YT, Liao XZ, Wu XL (2012) Prog Mater Sci 57:1

    Article  CAS  Google Scholar 

  17. Meyers MA, Vohringer O, Lubarda VA (2001) Acta Mater 49:4025

    Article  CAS  Google Scholar 

  18. Blewitt TH, Coltman RR, Redman JK (1957) J Appl Phys 28:651

    Article  CAS  Google Scholar 

  19. Li YS, Tao NR, Lu K (2008) Acta Mater 56:230

    Article  CAS  Google Scholar 

  20. Meyers MA, Andrade UR, Chokshi AH (1995) Metall Mater Trans A 26:2881

    Article  Google Scholar 

  21. Meyers MA, Gregori F, Kad BK, Schneider MS, Kalantar DH, Remington BA, Ravichandran G, Boehly T, Wark JS (2003) Acta Mater 51:1211

    Article  CAS  Google Scholar 

  22. Cao F, Beyerlein IJ, Addessio FL, Sencer BH, Trujillo CP, Cerreta EK, Gray GT (2010) Acta Mater 58:549

    Article  CAS  Google Scholar 

  23. Zhao WS, Tao NR, Guo JY, Lu QH, Lu K (2005) Scr Mater 53:745

    Article  CAS  Google Scholar 

  24. Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhu YT, Zhou F, Lavernia EJ, Xu HF (2004) Appl Phys Lett 84:3564

    Article  CAS  Google Scholar 

  25. Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Appl Phys Lett 84:592

    Article  CAS  Google Scholar 

  26. Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Appl Phys Lett 83:5062

    Article  CAS  Google Scholar 

  27. Liao XZ, Zhou F, Lavernia EJ, Srinivasan SG, Baskes MI, He DW, Zhu YT (2003) Appl Phys Lett 83:632

    Article  CAS  Google Scholar 

  28. Wu XL, Youssef KM, Koch CC, Mathaudhu SN, Kecskes LJ, Zhu YT (2011) Scr Mater 64:213

    Article  CAS  Google Scholar 

  29. Wang ZW, Wang YB, Liao XZ, Zhao YH, Lavernia EJ, Zhu YT, Horita Z, Langdon TG (2009) Scr Mater 60:52

    Article  CAS  Google Scholar 

  30. Rohatgi A, Vecchio KS, Gray GT (2001) Acta Mater 49:427

    Article  CAS  Google Scholar 

  31. Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Science 300:1275

    Article  CAS  Google Scholar 

  32. Zhang Y, Tao NR, Lu K (2009) Scr Mater 60:211

    Article  CAS  Google Scholar 

  33. Zhao YH, Horita Z, Langdon TG, Zhu YT (2008) Mater Sci Eng A 474:342

    Article  Google Scholar 

  34. Van Swygenhoven H, Derlet PM, Froseth AG (2004) Nat Mater 3:399

    Article  Google Scholar 

  35. Kibey S, Liu JB, Johnson DD, Sehitoglu H (2006) Appl Phys Lett 89:191911

    Article  Google Scholar 

  36. Asaro RJ, Suresh S (2005) Acta Mater 53:3369

    Article  CAS  Google Scholar 

  37. Tadmor EB, Hai S (2003) J Mech Phys Solids 51:765

    Article  CAS  Google Scholar 

  38. Zhu YT, Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhou F, Lavernia EJ (2004) Appl Phys Lett 85:5049

    Article  CAS  Google Scholar 

  39. Zhu YT, Liao XZ, Srinivasan SG, Lavernia EJ (2005) J Appl Phys 98:034319

    Article  Google Scholar 

  40. Wu XL, Zhu YT (2008) Phys Rev Lett 101:025503

    Article  CAS  Google Scholar 

  41. Zhu YT, Liao XZ, Wu XL (2008) JOM 60(9):60

    Article  CAS  Google Scholar 

  42. Zhang JY, Liu G, Wang RH, Li J, Sun J, Ma E (2010) Phys Rev B 81:172104

    Article  Google Scholar 

  43. Liao XZ, Zhao YH, Zhu YT, Valiev RZ, Gunderov DV (2004) J Appl Phys 96:636

    Article  CAS  Google Scholar 

  44. Gu P, Dao M, Asaro RJ, Suresh S (2011) Acta Mater 59:6861

    Article  CAS  Google Scholar 

  45. Dobron P, Chmelik F, Yi SB, Parfenenko K, Letzig D, Bohlen J (2011) Scr Mater 65:424

    Article  CAS  Google Scholar 

  46. Gu P, Kad BK, Dao M (2010) Scr Mater 62:361

    Article  CAS  Google Scholar 

  47. Asaro RJ, Krysl P, Kad B (2003) Philos Mag Lett 83:733

    Article  CAS  Google Scholar 

  48. Ni S, Wang YB, Liao XZ, Li HQ, Figueiredo RB, Ringer SP, Langdon TG, Zhu YT (2011) Phys Rev B 84:235401

    Article  Google Scholar 

  49. Shute CJ, Myers BD, Liao Y, Li SY, Hodge AM, Barbee TW, Zhu YT, Weertman JR (2011) Scr Mater 65:899

    Article  CAS  Google Scholar 

  50. Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang JY, Hirth JP (2010) Acta Mater 58:2262

    Article  CAS  Google Scholar 

  51. Fu HH, Benson DJ, Meyers MA (2001) Acta Mater 49:2567

    Article  CAS  Google Scholar 

  52. Yu Q, Shan ZW, Li J, Huang XX, Xiao L, Sun J, Ma E (2010) Nature 463:335

    Article  CAS  Google Scholar 

  53. Venables JA (1961) Philos Mag 6:379

    Article  CAS  Google Scholar 

  54. Hirth JP, Lothe J (1992) Theory of dislocations. Krieger Publishing Company, Malabar, FL, p 811

    Google Scholar 

  55. Liao XZ, Huang JY, Zhu YT, Zhou F, Lavernia EJ (2003) Philos Mag 83:3065

    Article  CAS  Google Scholar 

  56. Schiotz J, Di Tolla FD, Jacobsen KW (1998) Nature 391:561

    Article  Google Scholar 

  57. Shan ZW, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Science 305:654

    Article  CAS  Google Scholar 

  58. Van Swygenhoven H, Derlet PM, Hasnaoui A (2002) Phys Rev B 66:024101

    Article  Google Scholar 

  59. Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387

    Article  CAS  Google Scholar 

  60. Liao XZ, Kilmametov AR, Valiev RZ, Gao HS, Li XD, Mukherjee AK, Bingert JF, Zhu YT (2006) Appl Phys Lett 88:021909

    Article  Google Scholar 

  61. Rice JR (1992) J Mech Phys Solids 40:239

    Article  CAS  Google Scholar 

  62. Wu X, Zhu YT, Chen MW, Ma E (2006) Scr Mater 54:1685

    Article  CAS  Google Scholar 

  63. Wu XL, Liao XZ, Srinivasan SG, Zhou F, Lavernia EJ, Valiev RZ, Zhu YT (2008) Phys Rev Lett 100:095701

    Article  CAS  Google Scholar 

  64. Zhu YT, Liao XZ, Valiev RZ (2005) Appl Phys Lett 86:103112

    Article  Google Scholar 

  65. Yamakov V, Wolf D, Phillpot SR, Gleiter H (2002) Acta Mater 50:5005

    Article  CAS  Google Scholar 

  66. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Nat Mater 1:45

    Article  CAS  Google Scholar 

  67. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2004) Nat Mater 3:43

    Article  CAS  Google Scholar 

  68. Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H (2005) Acta Mater 53:1

    Article  CAS  Google Scholar 

  69. Cheng S, Stoica AD, Wang XL, Ren Y, Almer J, Horton JA, Liu CT, Clausen B, Brown DW, Liaw PK, Zuo L (2009) Phys Rev Lett 103:035502

    Article  CAS  Google Scholar 

  70. Li N, Wang J, Huang JY, Misra A, Zhang X (2011) Scr Mater 64:149

    Article  CAS  Google Scholar 

  71. Li L, Ungar T, Wang YD, Morris JR, Tichy G, Lendvai J, Yang YL, Ren Y, Choo H, Liaw PK (2009) Acta Mater 57:4988

    Article  CAS  Google Scholar 

  72. Wen HM, Zhao YH, Li Y, Ertorer O, Nesterov KM, Islamgaliev RK, Valiev RZ, Lavernia EJ (2010) Philos Mag 90:4541

    Article  CAS  Google Scholar 

  73. Yamakov V, Wolf D, Phillpot SR, Gleiter H (2003) Acta Mater 51:4135

    Article  CAS  Google Scholar 

  74. Zhang K, Weertman JR, Eastman JA (2004) Appl Phys Lett 85:5197

    Article  CAS  Google Scholar 

  75. Zhang K, Weertman JR, Eastman JA (2005) Appl Phys Lett 87:061921

    Article  Google Scholar 

  76. Jin M, Minor AM, Stach EA, Morris JW (2004) Acta Mater 52:5381

    Article  CAS  Google Scholar 

  77. Wang YB, Li BQ, Sui ML, Mao SX (2008) Appl Phys Lett 92:011903

    Article  Google Scholar 

  78. Sansoz F, Dupont V (2006) Appl Phys Lett 89:111901

    Article  Google Scholar 

  79. Fan GJ, Wang YD, Fu LF, Choo H, Liaw PK, Ren Y, Browning ND (2006) Appl Phys Lett 88:171914

    Article  Google Scholar 

  80. Wang YB, Ho JC, Liao XZ, Li HQ, Ringer SP, Zhu YT (2009) Appl Phys Lett 94:011908

    Article  Google Scholar 

  81. Ookawa AJ (1957) Phys Soc Jpn 12:825

    Article  Google Scholar 

  82. Niewczas M, Saada G (2002) Philos Mag A 82:167

    CAS  Google Scholar 

  83. Mahajan S, Chin GY (1973) Acta Metall 21:1353

    Article  CAS  Google Scholar 

  84. Mahajan S, Green ML, Brasen D (1977) Metall Trans A 8:283

    Article  Google Scholar 

  85. Thompson N (1953) Proc Phys Soc Lond Sect B 66:481

    Article  Google Scholar 

  86. Zhu YT, Huang JY, Gubicza J, Ungar T, Wang YM, Ma E, Valiev RZ (2003) J Mater Res 18:1908

    Article  CAS  Google Scholar 

  87. Wu XL, Zhu YT, Wei YG, Wei Q (2009) Phys Rev Lett 103:205504

    Article  CAS  Google Scholar 

  88. Wu XL, Qi Y, Zhu YT (2007) Appl Phys Lett 90:221911

    Article  Google Scholar 

  89. Wu XL, Zhu YT (2006) Appl Phys Lett 89:031922

    Article  Google Scholar 

  90. Zhu YT, Wu XL, Liao XZ, Narayan J, Mathaudhu SN, Kecskes LJ (2009) Appl Phys Lett 95:031909

    Article  Google Scholar 

  91. Derlet PM, Van Swygenhoven H, Hasnaoui A (2003) Philos Mag 83:3569

    Article  CAS  Google Scholar 

  92. Van Swygenhoven H (2002) Science 296:66

    Article  Google Scholar 

  93. Narayan J, Zhu YT (2008) Appl Phys Lett 92:151908

    Article  Google Scholar 

  94. Wu XL, Narayan J, Zhu YT (2008) Appl Phys Lett 93:031910

    Article  Google Scholar 

  95. Zhu YT, Narayan J, Hirth JP, Mahajan S, Wu XL, Liao XZ (2009) Acta Mater 57:3763

    Article  CAS  Google Scholar 

  96. Li BQ, Li B, Wang YB, Sui ML, Ma E (2011) Scr Mater 64:852

    Article  CAS  Google Scholar 

  97. Zhu YT, Wu XL, Liao XZ, Narayan J, Kecskes LJ, Mathaudhu SN (2011) Acta Mater 59:812

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support by the National Science Foundation of the United States [Grant No. DMR-1104667 (Y.T.Z. and J.N.)], the Australian Research Council [Grant No. DP120100510 (X.Z.L.)], and the National Science Foundation of China [11072243,11021262, and MOST 2010CB631004 (X.L.W.)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. T. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y.T., Liao, X.Z., Wu, X.L. et al. Grain size effect on deformation twinning and detwinning. J Mater Sci 48, 4467–4475 (2013). https://doi.org/10.1007/s10853-013-7140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7140-0

Keywords

Navigation