Skip to main content
Log in

Large scale synthesis of single-crystal and polycrystalline boron nitride nanosheets

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Boron nitride nanosheets (BNNSs) have an identical crystal structure and similar lattice parameter to those of graphene sheets. However, growing quality BNNSs consisting of only several atomic layers remains a challenge. Here, we report on the synthesis of BNNSs at a temperature of 350 °C using a CO2 pulsed laser plasma deposition (CO2-PLD) technique by irradiating a pyrolytic hexagonal boron nitride (h-BN) target. The deposition was performed either in vacuum at a pressure of 0.2 Pa, for which we obtained polycrystalline BN, or in hydrogen (H2) atmosphere at a pressure of 26 Pa for which we obtained single-crystal BNNSs. The presence of H2 seems to minimize the side effects of sputtering and the material shows higher purity and better crystallinity. High resolution transmission electron microscopy (HRTEM) showed the sheets to be mostly defect-free and to have the characteristic honeycomb structure of six-membered B3-N3 hexagon. HRTEM, electron diffraction, X-ray diffraction, Raman scattering, and Fourier transform infrared spectroscopy clearly identified h-BN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pakdel A, Zhi C, Bando Y, Nakayama T, Golberg D (2011) ACS Nano 5:6507. doi:10.1021/nn201838w

    Article  CAS  Google Scholar 

  2. Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y, Golberg D (2010) Nano Lett 10:5049. doi:10.1021/nl103251m

    Article  CAS  Google Scholar 

  3. Pacile D, Mayer JC, Girit CO, Zettl A (2008) Appl Phys Lett 92:133107. doi:10.1063/1.2903702

    Article  Google Scholar 

  4. Lin Y, William TV, Connel JW (2010) J Phys Chem Lett 1:277. doi:10.1021/jz9002108

    Article  Google Scholar 

  5. Cho HB, Tokoi Y, Tanaka S, Suzuki T, Jiang W, Suematsu H, Niihara K, Nakayama T (2011) J Mater Sci 46:2318. doi:10.1007/s10853-010-5075-2

    Article  CAS  Google Scholar 

  6. Luc M, Andrei K (2009) J Mater Sci 44:2560. doi:10.1007/s10853-009-3334-x

    Article  Google Scholar 

  7. Lee GH, Yu YJ, Lee C, Dean C, Shepard KL, Kim P, Hone J (2011) Appl Phys Lett 99:243114. doi:10.1063/1.3662043

    Article  Google Scholar 

  8. Zhi C, Xu Y, Bando Y, Golberg D (2011) ACS Nano 5:6571. doi:10.1021/nn201946x

    Article  CAS  Google Scholar 

  9. Pakdel A, Zhi C, Bando Y, Nakayama T, Golberg D (2012) Nanotechnology 23: 215601

    Google Scholar 

  10. Wang X, Pakdel A, Ci Zhi, Watanabe K, Sekiguchi T, Golberg D, Bando Y (2012) J Phys: Condens Matter 24(1–9):314205. doi:10.1088/0953-8984/24/31/314205

    Article  Google Scholar 

  11. Yu J, Qin L, Hao Y, Kuang S, Bai X, Chong YM, Zhang W, Wang E (2010) ACS Nano 4:414. doi:10.1021/nn901204c

    Article  CAS  Google Scholar 

  12. Kang HL, Hyeon-Jin S, Jinyeong L, In-Yeal L, Gil-Ho K, Jae-Young C, Sang-Woo K (2012) Nano Lett 12(2):714. doi:10.1021/nl203635v

    Article  Google Scholar 

  13. Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D (2009) Mater 21(28):2889. doi:10.1002/adma.200900323

    CAS  Google Scholar 

  14. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Nano Lett 10:3209. doi:10.1021/nl1022139

    Article  CAS  Google Scholar 

  15. Ismach A, Chou H, Ferrer DA, Wu Y, McDonnell S, Floresca HC, Covacevich A, Pope C, Piner R, Kim MJ, Wallace RM, Colombo L, Ruoff RS (2012) ACS Nano 6:6378. doi:10.1021/nn301940k

    Article  CAS  Google Scholar 

  16. Kim KK, Hsu A, Jia X, Kim SM, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva JF, Dresselhaus M, Palacios T, Kong J (2012) Nano Lett, 12: 161. doi:10.1021/nl203249a

  17. Zhu DM, Jakovidis G, Bourgeois L (2010) Mater Lett 64:918. doi:10.1016/j.matlet.2010.01.058

    Article  CAS  Google Scholar 

  18. Anzai A, Nishiyama F, Yamanaka S, Inumaru K (2011) Mater Res Bull 46:2230. doi:10.1016/j.materresbull.2011.09.006

    Article  CAS  Google Scholar 

  19. BenMoussa B, Haen JD, Borschel C, Barjon J, Soltani A, Mortet V, Ronning C, Olieslaeger MD, Boyen H-G, Haenen K (2012) J Phys D: Appl Phys 45:135302. doi:10.1088/0022-3727/45/13/135302

  20. Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C (1995) Phys Rev B 51:4606. doi:10.1103/PhysRevB.51.4606

    Article  CAS  Google Scholar 

  21. Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang Z-Y, Dresselhaus MS, Li LJ, Kong J (2010) Nano Lett 10:4134. doi:10.1021/nl1023707

    Article  CAS  Google Scholar 

  22. Jin C, Lin F, Suenaga K, Iijima S (2009) Phys Rev Lett 102: 195505-1. doi:10.1103/PhysRevLett.102.195505

  23. Zobelli A, Gloter A, Ewels CP, Seifert G, Colliex C (2007) Phys Rev B 75:245. doi:10.1103/PhysRevB.75.245402

    Google Scholar 

  24. Jin MS, Kim NO (2010) J Electr Eng Technol 5:637. doi:10.5370/JEET.2010.5.4.637

    Article  Google Scholar 

  25. Nemanich RJ, Solin SA, Martin RM (1981) Phys Rev B 23:6348. doi:10.1103/PhysRevB.23.6348

    Article  CAS  Google Scholar 

  26. Hoffman MM, Doll GL, Eklund PC (1984) Phys Rev B 30:6051. doi:10.1103/PhysRevB.30.6051

    Article  CAS  Google Scholar 

  27. Wu J, Han WQ, Walukiewicz W, Ager JW, Shan W, Haller EE, Zettl A (2004) Nano Lett 4:647. doi:10.1021/nl049862

    Article  CAS  Google Scholar 

  28. Paine RT, Narula CK (1990) Chem Rev 90:73

    Article  CAS  Google Scholar 

  29. Chen ZG, Zou J, Liu G, Li F, Wang Y, Wang LZ, Yuan XL, Sekiguchi T, Cheng HM, Lu GQ (2008) ACS Nano 2:2183. doi:10.1021/nn8004922

    Article  CAS  Google Scholar 

  30. Moon OM, Kang BC, Lee SB, Boo JH (2004) Thin Solid Films 464:164. doi:10.1016/j.tsf.2004.05.107

    Article  Google Scholar 

  31. Sajjad M, Zhang HX, Peng XY, Feng PX (2011) Phys Scr 83:065601. doi:10.1088/0031-8949/83/06/065601

    Article  Google Scholar 

  32. Sajjad M, Feng X P (2011) Appl Phys Lett 99: 253109-1. doi:10.1063/1.3671170

  33. Zhu M, Wang J, Outlaw RA, Hou K, Manos DM, Holloway BC (2007) Diam Relat Mater 16:196

    Article  CAS  Google Scholar 

  34. Mingyao Z, Jianjun W, Brian CH, Outlaw RA, Xin Z, Kun H, Shutthanandan V, Dennis MM (2007) Carbon 45:2229. doi:10.1016/j.carbon.2007.06.017

    Article  Google Scholar 

Download references

Acknowledgements

The electron microscopy was performed at the Nanoscopy Facility, a user facility at the University of Puerto Rico (UPR), sponsored UPR, NSF, and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajjad, M., Ahmadi, M., Guinel, M.JF. et al. Large scale synthesis of single-crystal and polycrystalline boron nitride nanosheets. J Mater Sci 48, 2543–2549 (2013). https://doi.org/10.1007/s10853-012-7044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7044-4

Keywords

Navigation