Skip to main content
Log in

Shape memory properties of multi-walled carbon nanotube/polyurethane composites prepared by in situ polymerization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A high strength multi-walled carbon nanotube (MWCNT)/shape memory polyurethane composite (SMPC) was prepared by in situ polymerization. The effect of MWCNT content and its dispersion on the microstructure, mechanical, and shape memory property of the SMPC were studied by scanning electron microscopy, universal testing machine, and dynamic mechanical analysis. The results showed that MWCNTs can be well dispersed in the composites and the composites with homogeneous dispersion of MWCNTs exhibited superior mechanical properties for MWCNTs supplied cross-link netpoints in the composites. And the materials with 97 % of recovery ratios (Rr) and 94 % of fixing ratios (Rf) indicated that this SMPC is a prominent potential candidate for smart actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leng J, Lan X, Liu Y, Du S (2011) Prog Mater Sci 56:1077

    Article  CAS  Google Scholar 

  2. Chen SJ, Hu JL, Zhuo HT, Chen SG (2011) J Mater Sci 46:5294. doi:10.1007/s10853-011-5469-9

    Article  CAS  Google Scholar 

  3. Lendlein A, Kelch S (2002) Angew Chem Int Ed 41:2034

    Article  CAS  Google Scholar 

  4. Behl M, Razzaq MY, Lendlein A (2010) Adv Mater 22:3388

    Article  CAS  Google Scholar 

  5. Zhuo HT, Hu JL, Chen SJ (2011) J Mater Sci 46:3464. doi:10.1007/s10853-011-5251-z

    Article  CAS  Google Scholar 

  6. Nguyen TD, Yakacki CM, Brahmbhatt PD, Chambers ML (2010) Adv Mater 22:3411

    Article  CAS  Google Scholar 

  7. Xie T (2010) Nature 464:267

    Article  CAS  Google Scholar 

  8. Cho JW, Kim JW, Jung YC, Goo NS (2005) Macromol Rapid Commun 26:412

    Article  CAS  Google Scholar 

  9. Golbang AGA, Kokabi M (2010) In multi-functional materials and structures III, Pts 1 and 2, 123–125: 999

  10. Lee KM, Koerner H, Vaia RA, Bunning TJ, White TJ (2011) Soft Matter 7:4318

    Article  CAS  Google Scholar 

  11. Zhu Y, Hu JL, Luo HS, Young RJ, Deng LB, Zhang S et al (2012) Soft Matter 8:2509

    Article  CAS  Google Scholar 

  12. Lee SH, Kim JW, Kim BK (2004) Smart Mater Struct 13:1345

    Article  CAS  Google Scholar 

  13. Koerner H, Kelley J, George J, Drummy L, Mirau P, Bell NS et al (2009) Macromolecules 42:8933

    Article  CAS  Google Scholar 

  14. Agarwal P, Chopra M, Archer LA (2011) Angew Chem Int Ed 50:8670

    Article  CAS  Google Scholar 

  15. Zhang YM, Wang QH, Wang C, Wang TM (2011) J Mater Chem 21:9073

    Article  CAS  Google Scholar 

  16. Mya KY, Gose HB, Pretsch T, Bothe M, He C (2011) J Mater Chem 21:4827

    Article  CAS  Google Scholar 

  17. Gunes IS, Jimenez GA, Jana SC (2009) Carbon 47:981

    Article  CAS  Google Scholar 

  18. Wang W, Sun X, Wu W, Peng H, Yu Y (2012) Angew Chem 124:4722

    Article  Google Scholar 

  19. Deka H, Karak N, Kalita RD, Buragohain AK (2010) Carbon 48:2013

    Article  CAS  Google Scholar 

  20. Coleman JN, Khan U, Gun’ko YK (2006) Adv Mater 18:689

    Article  CAS  Google Scholar 

  21. Lee HF, Yu HH (2011) Soft Matter 7:3801

    Article  CAS  Google Scholar 

  22. Tang BZ, Xu HY (1999) Macromolecules 32:2569

    Article  CAS  Google Scholar 

  23. Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP et al (2003) Nature 423:703

    Article  CAS  Google Scholar 

  24. Regev O, ElKati PNB, Loos J, Koning CE (2004) Adv Mater 16:248

    Article  CAS  Google Scholar 

  25. Kong L, Tang S, Li C, Wang W, Zhu D, Yin Z (2006) Opt Technol 32:612

    Google Scholar 

  26. Xue L, Dai SY, Li Z (2009) Macromolecules 42:964

    Article  CAS  Google Scholar 

  27. Nagata M, Yamamoto Y (2009) J Polym Sci A Polym Chem 47:2422

    Article  CAS  Google Scholar 

  28. Zhang YM, Wang C, Pei XQ, Wang QH, Wang TM (2010) J Mater Chem 20:9976

    Article  CAS  Google Scholar 

  29. Jung YC, Yoo HJ, Kim YA, Cho JW, Endo M (2010) Carbon 48:1598

    Article  CAS  Google Scholar 

  30. Richardson TB, Mosiewicki MA, Uzunpinar C, Marcovich NE, Aranguren MI, Kilinc-Balci F et al (2011) Polym Compos 32:455

    Article  CAS  Google Scholar 

  31. Hwang GL, Shieh YT, Hwang KC (2004) Adv Funct Mater 14:487

    Article  CAS  Google Scholar 

  32. Kelly A (1986) Strong solids, 3rd edn. Oxford University, Oxford

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude and thanks to the financial support of the National Foundation for Distinguished Young Scholars of China (Grant No. 51025517), the innovative group foundation from NSFC (Grant No. 50721062) and the financial support of the National 973 project of China (2007CB607606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Y., Zhang, Y., Wang, Q. et al. Shape memory properties of multi-walled carbon nanotube/polyurethane composites prepared by in situ polymerization. J Mater Sci 48, 2207–2214 (2013). https://doi.org/10.1007/s10853-012-6996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6996-8

Keywords

Navigation