Skip to main content
Log in

Green polyurethane nanocomposites from soy polyol and bacterial cellulose

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With increased environmental concerns, fluctuations in oil prices, and dependency on oil, there has been an emergence in the use of biobased polyurethanes prepared with polyols derived from plant oils, such as soybean oil. In this study, novel polyurethane materials were synthesized using polyols obtained from soybean oils. The polyurethanes were produced by reacting the polyols with polymeric isocyanate with an isocyanate index of 100 at 150 °C for 2 h for complete curing. The mechanical properties of this biobased polyurethane were improved by incorporating novel nanosized cellulose produced from bacteria. The source of the bacterial cellulose nanofibrils was a commercially available food product nata-de-coco. A fine dispersion of the nanocellulose fibrils in biobased polyurethane matrix was achieved by using a high speed homogenizer at 30,000 rpm, which was observed by field emission transmission electron microscopy and scanning probe microscopy. The average diameter size of the cellulose fibers were determined to be 22 ± 5 nm by scanning probe microscopy. The flexural strength and modulus were improved even at 0.125 wt% bacterial cellulose concentration and the optimum nanocomposite was obtained with 0.250 wt% concentration due to good interaction of isocyanates and the cellulose. Dynamic mechanical analysis supported the flexural testing data for modulus values. Transparent thick nanocomposite samples show one additional advantage of the nanocomposite technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rehab A, Salahuddin N (2005) Mater Sci Eng A 399:368

    Article  Google Scholar 

  2. Gorrasi G, Tortora M, Vittoria V (2005) J Polym Sci B 43:2454

    Article  CAS  Google Scholar 

  3. Seydibeyoglu MO, Isci S, Gungor N, Ece OI, Guner FS (2010) J Appl Polym Sci 116:832

    CAS  Google Scholar 

  4. Oertel G (1994) Polyurethane handbook. Hanser Gardner Publications, Berlin

    Google Scholar 

  5. Seydibeyoglu MO, Oksman K (2008) Compos Sci Technol 68:908

    Article  Google Scholar 

  6. Petrovic ZS, Ferguson J (1991) Prog Polym Sci 16:695

    Article  CAS  Google Scholar 

  7. Yıldız B, Seydibeyoglu MO, Guner FS (2009) Polym Degrad Stab 94:1072

    Article  Google Scholar 

  8. Lambda NMK, Woodhouse KA, Cooper SL (1997) Polyurethanes in biomedical applications. CRC Press, Boca Raton

    Google Scholar 

  9. Sharma V, Kundu PP (2008) Prog Polym Sci 33:1199

    Article  CAS  Google Scholar 

  10. Güner FS, Yağc Y, Erciyes AT (2006) Prog Polym Sci 31:633

    Article  Google Scholar 

  11. Kiatsimkul PP, Suppes GJ, Sutterlin WR (2007) Ind Crops Prod 25:202

    Article  CAS  Google Scholar 

  12. Kiatsimkul PP, Suppes GJ, Hsieh FH, Lozada Z, Tu YC (2008) Ind Crops Prod 25:257

    Article  Google Scholar 

  13. Guo A, Demydov D, Zhang W, Petrovic ZS (2002) J Polym Env 10:49

    Article  CAS  Google Scholar 

  14. Husic S, Javni I, Petrovic ZS (2005) Compos Sci Technol 65:19

    Article  CAS  Google Scholar 

  15. Latere Dwan’Isa JP, Mohanty AK, Misra M, Drzal LT, Kazemizadeh M (2003) J Polym Env 11:161

    Article  Google Scholar 

  16. Ferrer MCC, Babb D, Ryan AJ (2008) Polymer 49:3279

    Article  CAS  Google Scholar 

  17. Tu YC, Fan H, Suppes GJ, Hsieh FH (2009) J Appl Polym Sci 114:2577

    Article  CAS  Google Scholar 

  18. Latere Dwan’Isa JP, Mohanty AK, Misra M, Drzal LT, Kazemizadeh M (2004) J Mater Sci 39:2081

    Article  Google Scholar 

  19. Latere Dwan’Isa JP, Mohanty AK, Misra M, Drzal LT, Kazemizadeh M (2004) J Mater Sci 39:1887

    Article  Google Scholar 

  20. Dufresne A (2008) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, p 401

    Book  Google Scholar 

  21. Bondeson D, Mathew A, Oksman K (2006) Cellulose 13:171

    Article  CAS  Google Scholar 

  22. Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Carbohydr Polym 76:607

    Article  CAS  Google Scholar 

  23. Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Compos Sci Technol 69:1293

    Article  CAS  Google Scholar 

  24. Blaker JJ, Lee KY, Li X, Menner A, Bismarck A (2009) Green Chem 11:1321

    Article  CAS  Google Scholar 

  25. Lee KY, Blaker JJ, Bismarck A (2009) Compos Sci Technol 69:2724

    Article  CAS  Google Scholar 

  26. Gindl W, Keckes J (2004) Compos Sci Technol 64:2407

    Article  CAS  Google Scholar 

  27. Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Adv Mater 20:3122

    Article  CAS  Google Scholar 

  28. Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) Cellulose 15:507

    Article  CAS  Google Scholar 

  29. Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Biosci Biotechnol Biochem 59:1498

    Article  CAS  Google Scholar 

  30. Merlatti C, Perrin FX, Aragon E, Margaillan A (2008) Polym Degrad Stab 93:896

    Article  CAS  Google Scholar 

  31. Mishra AK, Chattopadhyay DK, Sreedhar B, Raju KVSN (2006) Prog Org Coat 55:231

    Article  CAS  Google Scholar 

  32. Ciobanu C, Ungureanu M, Ignat L, Ungureanu D, Popa VI (2004) Ind Crops Prod 20:231

    Article  CAS  Google Scholar 

  33. Jiang L, Morelius E, Zhang J, Wolcott M (2008) J Compos Mater 42:2629

    Article  CAS  Google Scholar 

  34. Ljungberg N, Cavaille JY, Heux L (2006) Polymer 47:6285

    Article  CAS  Google Scholar 

  35. Lu J, Askeland P, Drzal LT (2008) Polymer 49:1285

    Article  CAS  Google Scholar 

  36. Raj RG, Kokta BV, Maldas D, Danealt C (1989) J Appl Polym Sci 7:1089

    Article  Google Scholar 

  37. Kahng GG, Lim SH, Yun HD, Seo WT (2001) Biotechnol Bioprocess Eng 6:112

    Article  CAS  Google Scholar 

  38. Bledzki AK, Faruk O (2004) Compos Sci Technol 64:693

    Article  CAS  Google Scholar 

  39. Iguchi M, Yamanaka S, Budhiono A (2000) J Mater Sci 35:261. doi:10.1023/A:1004775229149

    Article  CAS  Google Scholar 

  40. Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose 5:249

    Article  CAS  Google Scholar 

  41. Astley OM, Chanliaud E, Donald AM, Gidley MJ (2001) Int J Biol Macromol 29:193

    Article  CAS  Google Scholar 

  42. Stelzig BSH, Klapper M, Müllen K (2008) Adv Mater 20:929

    Article  CAS  Google Scholar 

  43. Kim Y, Jung R, Kim HS, Jin HJ (2009) Curr Appl Phys 9:S69

    Article  Google Scholar 

Download references

Acknowledgements

MOS and AKM are thankful to the Ministry of Research and Innovation of Ontario, Canada, for the post-doctoral research fellowship. Partial financial supports from NSERC-Discovery Grant program individual (Mohanty) and The Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) and the University of Guelph-2009 Bioeconomy-Industrial Uses Research Program are greatly appreciated. Prof. John Dutcher and his group are acknowledged for the use of SPM facilities. The donation of novel soy-based biopolyols for this research by Arkema is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjusri Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seydibeyoğlu, M.Ö., Misra, M., Mohanty, A. et al. Green polyurethane nanocomposites from soy polyol and bacterial cellulose. J Mater Sci 48, 2167–2175 (2013). https://doi.org/10.1007/s10853-012-6992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6992-z

Keywords

Navigation