Skip to main content
Log in

Effect of aluminum substitution on microstructure and magnetic properties of electrospun BaFe12O19 nanofibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

BaFe12−x Al x O19 nanofibers (x = 0–2.0) with average diameter 110 nm have been prepared via the electrospinning and subsequent heat treatment at 1100 °C for 2 h. Individual BaFe12O19 nanofibers were composed of numerous nanocrystallites stacking alternatively along the long axis of fiber and the single crystallites on each nanofibers had random orientations. With increasing Al3+ ions substitution contents from 0 to 2.0, the diameter and morphology of nanofibers were almost no change. However, the lattice parameters decreased due to Fe3+ ions substituted by smaller Al3+ ions and the average grain size calculated by the Scherrer’s equation reduced from 47 to 42 nm. The crystallites possessed a hexagonal plate-like shape at x = 0 while they became rod-like with various Al3+ ions substitution. The X-ray diffraction patterns show that single-phase barium hexaferrite was formed when Al3+ ions substitution contents were less than and equal to 1.0, while other impurity phases were detected when they were more than 1.0. The chemical analysis shows that the element Al was all incorporated into the lattice of BaFe12O19 and evenly distributed throughout the BaFe12−x Al x O19 nanofibers. The magnetic testing shows that the saturation magnetization (M s) decreased obviously from 63.92 to 29.70 A m2/kg, while coercivity (H c) increased significantly from 288.2 to 740.7 kA/m with increasing Al3+ ions substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghasemi A, Hossienpour A, Morisako A et al (2006) J Magn Magn Mater 302:429. doi:10.1016/j.jmmm.2005.10.006

    Article  CAS  Google Scholar 

  2. Mallick KK, Shepherd P, Green RJ (2007) J Euro Ceram Soc 27:2045. doi:10.1016/j.jeurceramsoc.2006.05.098

    Article  CAS  Google Scholar 

  3. Mu GH, Chen N, Pan XF et al (2008) Mater Lett 63:840. doi:10.1016/j.matlet.2007.06.074

    Article  Google Scholar 

  4. Kojima H (1982) In: Wohlfarth EP (ed) Ferromagnetic materials. North Holland, Amsterdam

    Google Scholar 

  5. Parkin Stuart SP, Hayashi M, Thomas L (2008) Science 320:190. doi:10.1126/science.1145799

    Article  CAS  Google Scholar 

  6. Žužek Rožman K, Pečko D, Šturm S et al (2012) Mater Chem Phys 133:218. doi:10.1016/j.matchemphys.2012.01.013

    Article  Google Scholar 

  7. Li YQ, Huang Y, Li Yan (2011) Appl Surf Sci 257:8974. doi:10.1016/j.apsusc.2011.05.075

    Article  CAS  Google Scholar 

  8. Pullar RC, Appleton SG, Bhattacharya AK (1998) J Magn Magn Mater 186:326. doi:10.1016/S0304-8853(98)00107-3

    Article  CAS  Google Scholar 

  9. Pullar RC, Bhattacharya AK (2006) J Magn Magn Mater 300:490. doi:10.1016/j.jmmm.2005.06.001

    Article  CAS  Google Scholar 

  10. Song FZ, Shen XQ, Liu MQ, Xiang J (2010) Solid State Sci 12:1603. doi:10.1016/j.solidstatesciences.2010.07.007

    Article  CAS  Google Scholar 

  11. Mou FZ, Guan JG, Sun ZG et al (2010) J Solid State Chem 183:736. doi:10.1016/j.jssc.2010.01.016

    Article  CAS  Google Scholar 

  12. Li CJ, Wang B, Wang JN (2012) J Magn Magn Mater 324:1305. doi:10.1016/j.jmmm.2011.11.016

    Article  CAS  Google Scholar 

  13. Zhang JL, Fu JC, Li FS et al (2012) ACS Nano 6:2273. doi:10.1021/nn204342m

    Article  CAS  Google Scholar 

  14. Ounnunkad S (2006) Solid State Commun 138:472. doi:10.1016/j.ssc.2006.03.020

    Article  CAS  Google Scholar 

  15. Liu Y, Drew Michael GB, Wang JP et al (2010) J Magn Magn Mater 322:366. doi:10.1016/j.jmmm.2009.09.062

    Article  CAS  Google Scholar 

  16. Shirtcliffe NJ, Thompson S, O’Keefe ES et al (2007) Mater Res Bull 42:281. doi:10.1016/j.materresbull.2006.06.001

    Article  CAS  Google Scholar 

  17. Liu Y, Drew Michael GB, Liu Y et al (2010) J Magn Magn Mater 322:3342. doi:10.1016/j.jmmm.2010.06.022

    Article  CAS  Google Scholar 

  18. Atkinson R, Gerber R, Papakonstantinou P et al (1992) J Magn Magn Mater 104–107:1005. doi:10.1016/0304-8853(92)90462-W

    Article  Google Scholar 

  19. Luo H, Rai BK, Mishra SR et al (2012) J Magn Magn Mater 324:2602. doi:10.1016/j.jmmm.2012.02.106

    Article  CAS  Google Scholar 

  20. Singhal S, Namgyal T, Singh J et al (2011) Ceram Int 37:1833. doi:10.1016/j.ceramint.2011.02.001

    Article  CAS  Google Scholar 

  21. Liu Y, Drew Michael GB, Liu Y (2011) J Magn Magn Mater 323:945. doi:10.1016/j.jmmm.2010.11.075

    Article  CAS  Google Scholar 

  22. Skomski R (2003) J Phys Condens Matter 15:R841. doi:10.1088/0953-8984/15/20/202

    Article  CAS  Google Scholar 

  23. Rezlescu L, Rezlescu E, Popa PD et al (1999) J Magn Magn Mater 193:288. doi:10.1016/S0304-8853(98)00442-9

    Article  CAS  Google Scholar 

  24. Mali A, Ataie A (2005) Scripta Mater 53:1065. doi:10.1016/j.scriptamat.2005.06.037

    Article  CAS  Google Scholar 

  25. Liu Y, Drew Michael GB, Liu Y et al (2010) J Magn Magn Mater 322:814. doi:10.1016/j.jmmm.2009.11.009

    Article  CAS  Google Scholar 

  26. Liu MQ, Shen XQ, Song FZ et al (2011) J Solid State Chem 184:871. doi:10.1016/j.jssc.2011.02.010

    Article  CAS  Google Scholar 

  27. Qiu JX, Zhang QG, Gu MY (2005) J Appl Phys 98:5. doi:10.1063/1.2135412

    Article  Google Scholar 

  28. Shanker R (1990) J Mater Sci 25:2465. doi:10.1007/BF00638043

    Article  Google Scholar 

  29. Kazin PE, Trusov LA, Zaitsev DD et al (2008) J Magn Magn Mater 320:1068. doi:10.1016/j.jmmm.2007.10.020

    Article  CAS  Google Scholar 

  30. Tsuzuki A, Kani K, Watari K et al (1992) J Mater Sci Lett 11:893. doi:10.1007/bf00730499

    Article  CAS  Google Scholar 

  31. Yue ZY, Zhong MJ, Ma HL et al (2008) J Shanghai Univ 12:216. doi:10.1007/s11741-008-0306-1

    Article  CAS  Google Scholar 

  32. Dhage Vinod N, Mane ML, Keche AP (2011) Phys B 406:789. doi:10.1016/j.physb.2010.11.094

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the Natural Science Foundation of China (Grant Nos. 51073005, 21274006), the Beijing Natural Science Foundation (Grant Nos. 2112013, KZ201010012012), PHR (IHLB), the 973 Project (Grant No. 2010CB933501), Beijing Municipal Science and Technology Development Program (Grant No. Z111103066611004) and Textile Vision Science & Education fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-Ju Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CJ., Huang, BN. & Wang, JN. Effect of aluminum substitution on microstructure and magnetic properties of electrospun BaFe12O19 nanofibers. J Mater Sci 48, 1702–1710 (2013). https://doi.org/10.1007/s10853-012-6928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6928-7

Keywords

Navigation