Skip to main content
Log in

Influence of composition on monomodal versus multimodal γ′ precipitation in Ni–Al–Cr alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study investigates the influence of alloy composition on γ′ precipitation in Ni–8Al–8Cr and Ni–10Al–10Cr at.% during continuous cooling from a supersolvus temperature. When subjected to the same cooling rate, Ni–8Al–8Cr develops a monomodal population, whereas Ni–10Al–10Cr develops a multimodal (primarily bimodal) population of γ′ precipitates. The bimodal γ′ precipitate size distribution in Ni–10Al–10Cr alloy can be attributed to two successive nucleation bursts during continuous cooling while the monomodal γ′ size distribution in Ni–8Al–8Cr results from a single nucleation burst followed by a longer time—wider temperature window for nucleation resulting in a larger number density of precipitates. Three-dimensional atom probe investigations reveal that while local equilibrium is achieved across the γ/γ′ interface, far-field γ compositions still retain an excess of Al and a depletion of Cr with respect to equilibrium, thus giving direct experimental evidence of the driving force for subsequent nucleation bursts during continuous cooling in case of Ni–10Al–10Cr. Contrastingly, in case of the Ni–8Al–8Cr alloy, while the γ phase retains an excess of Al and a depletion of Cr with respect to equilibrium after continuous cooling to room temperature, the additional driving force is consumed during subsequent isothermal annealing by growth of the large number of γ′ precipitates without any new nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hwang JY, Nag S, Singh ARP, Srinivasan R, Tiley J, Fraser HL, Banerjee R (2009) Scripta Mater 61:92

    Article  CAS  Google Scholar 

  2. Hwang JY, Nag S, Singh ARP, Srinivasan R, Tiley R, Viswanathen GB, Fraser HL, Banerjee R (2009) Metall Mater Trans A 40A:3059

    Article  CAS  Google Scholar 

  3. Hong YM, Mishima Y, Suzuki T (1989) Mater Res Soc Symp Proc 133:429

    Article  Google Scholar 

  4. Caron P (2000) Superalloys 2000. TMS, Warrendale, PA, p 737–746

  5. Porter DA, Easterling KE (2004) Phase transformations in metal and alloys, 2nd edn. Taylor & Francis, London

    Google Scholar 

  6. Booth-Morrison C, Eninger JW, Sudbrack CK, Mao Z, Noebe R, Seidman DN (2008) Acta Mater 56:3422

    Article  CAS  Google Scholar 

  7. Singh ARP, Nag S, Hwang JY, Viswanathen GB, Tiley J, Srinivasan R, Fraser HL, Banerjee R (2011) Mater Charact 62:878

    Article  CAS  Google Scholar 

  8. Sarosi PM, Wang B, Simmons P, Wang Y, Mills MJ (2007) Scripta Mater 57:767

    Article  CAS  Google Scholar 

  9. Radis R, Schaffer M, Albu M, Kothleitner G, Polt P, Kozeschnik E (2009) Acta Mater 57:5739

    Article  CAS  Google Scholar 

  10. Wen YH, Simmons JP, Shen C, Woodward C, Wang Y (2003) Acta Mater 51:1123

    Article  CAS  Google Scholar 

  11. Wen YH, Wang B, Simmons JP, Wang Y (2006) Acta Mater 54:2087

    Article  CAS  Google Scholar 

  12. Payton EJ, Phillips PJ, Mills MJ (2010) Mater Sci Eng A 527:2684

    Article  Google Scholar 

  13. Babu SS, Miller MK, Vitak JM, David SA (2001) Acta Mater 49:4149

    Article  CAS  Google Scholar 

  14. Miller MK (2001) Micron 32:757

    Article  CAS  Google Scholar 

  15. Blavette D, Cadela E, Deconihout B (2000) Material Charact 44:133

    Article  CAS  Google Scholar 

  16. Ardell AJ, Ozolins V (2005) Nat Mater 4:309

    Article  CAS  Google Scholar 

  17. Hellman OC, Vandenbroucke JA, Rusing J, Isheim D, Seidman DN (2000) Microsc Microanal 6:437

    CAS  Google Scholar 

  18. Saunders N (1996) In: Kissinger RD et al (eds) Superalloys 1996. TMS, Warrendale, p 101

  19. Dupin N, Ansara I, Sundman B (2001) CALPHAD 25:279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the U.S. Air Force Research Laboratory (AFRL ISES Contract, contract number FA8650-08-C-5226). In addition, the authors also gratefully acknowledge the Center for Advanced Research and Technology (CART) at the University of North Texas for access to the experimental facilities used for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojhirunsakool, T., Meher, S., Hwang, J.Y. et al. Influence of composition on monomodal versus multimodal γ′ precipitation in Ni–Al–Cr alloys. J Mater Sci 48, 825–831 (2013). https://doi.org/10.1007/s10853-012-6802-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6802-7

Keywords

Navigation