Skip to main content
Log in

Molecular-level computational investigation of shock-wave mitigation capability of polyurea

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Various static and (equilibrium and non-equilibrium) dynamic molecular-level computational methods and tools are utilized in order to investigate the basic shock-wave physics and shock-wave material interactions in polyurea (a nano-phase segregated elastomeric co-polymer). The main goal of this investigation was to establish relationships between the nano-segregated polyurea microstructure (consisting of rod-shaped, discrete, so-called “hard domains” embedded into a highly compliant, so-called soft matrix) and the experimentally established superior capability of this material to disperse and attenuate resident shock waves (e.g., those generated as a result of blast-wave impact). By analyzing molecular-level interactions of the shock waves with polyurea, an attempt was made to identify and quantify main phenomena and viscous/inelastic deformation and microstructure-altering processes taking place at the shock front, which are most likely responsible for the superior shock-mitigation behavior of polyurea. Direct molecular-level simulations of shock-wave generation and propagation in the “strong-shock” regime are utilized in order to construct the appropriate shock-Hugoniot relations (relations which are used in the construction of the associated continuum-level material models). Extension of these relations into the “weak-shock” regime of interest from the traumatic brain injury prevention point of view is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Grujicic M, He T, Pandurangan B (2011) Multidiscip Model Mater Struct 7(2):96

    CAS  Google Scholar 

  2. Grujicic M, Bell WC, Pandurangan B, He T (2010) Mater Des 31:4050

    Article  CAS  Google Scholar 

  3. Grujicic M, Arakere A, Pandurangan B, Grujicic A, Littlestone AA, Barsoum RS (2012) Multidiscip Model Mater Struct 8(2)

  4. Grujicic M, He T, Pandurangan B, Svingala FR, Settles GS, Hargather MJ (2011) J Mater Eng Perform 21(1):2

    Article  Google Scholar 

  5. Grujicic M, Pandurangan B, King AE, Runt J, Tarter J, Dillon G (2011) J Mater Sci 46(6):1767. doi:10.1007/s10853-010-4998-y

    Article  CAS  Google Scholar 

  6. Bogoslovov RB, Roland CM, Gamache RM (2007) Appl Phys Lett 90:221910

    Article  Google Scholar 

  7. Grujicic M, Pandurangan B, He T, Cheeseman BA, Yen C-F, Randow CL (2010) Mater Sci Eng, A 527(29–30):7741

    Google Scholar 

  8. Grujicic M, Bell WC, Pandurangan B, Glomski PS (2011) J Mater Eng Perform 20(6):877

    Article  CAS  Google Scholar 

  9. Grujicic A, LaBerge M, Grujicic M, Pandurangan B, Runt J, Tarter J, Dillon G (2011) J Mater Eng Perform. doi:10.1007/s11665-011-0065-3

  10. Choi T, Fragiadakis D, Roland CM, Runt J (2012) Macromolecules 45:3581

    Article  CAS  Google Scholar 

  11. Qiao J, Amirkhizi AV, Schaaf K, Nemat-Nasser S, Wu G (2011) Mech Mater 43:598

    Article  Google Scholar 

  12. Grujicic M, Pandurangan B, Bell WC, Cheeseman BA, Yen C-F, Randow CL (2011) Mater Sci Eng, A 528(10–11):3799

    Google Scholar 

  13. Davison L (2008) Fundamentals of shock wave propagation in solids. Springer, Berlin

    Google Scholar 

  14. Grujicic M, Pandurangan B, Bell WC, Cheeseman BA, Patel P, Gazonas GA (2011) J Mater Sci 46(22):7298. doi:10.1007/s10853-011-5691-5

    Article  CAS  Google Scholar 

  15. Arman B, Reddy AS, Arya G (2012) Macromolecules 45:3247

    Article  CAS  Google Scholar 

  16. http://www.accelrys.com/mstudio/msmodeling/visualiser.html. Accessed 2 June 2012

  17. Runt J (2012) Work in progress, Pennsylvania State University, University Park, PA

  18. http://www.accelrys.com/mstudio/msmodeling/amorphouscell.html. Accessed 2 June 2012

  19. Sun H (1998) J Phys Chem B 102:7338

    Article  CAS  Google Scholar 

  20. Grujicic M, Cao G, Gersten B (2004) Mater Sci Eng B 107:204–216

    Google Scholar 

  21. Grujicic M, Sun YP, Koudela KL (2009) Appl Surf Sci 253:2007

    Google Scholar 

  22. http://www.accelrys.com/mstudio/msmodeling/discover.html. Accessed 2 June 2012

  23. Theodorou DN, Suter UW (1986) Macromolecules 19:139

    Article  CAS  Google Scholar 

  24. Amirkhizi AV, Isaacs J, McGee J, Namet-Nasser S (2006) Phil Mag 86(36):5847

    Article  CAS  Google Scholar 

  25. Mock W, Bartyczak S, Lee G, Fedderly J, Jordan K (2009) In: Shock compression of condensed matter. American Institute for Physics, Melville, NY, p 1241–1244

  26. Grujicic M, Bell WC, Pandurangan B, Cheeseman BA, Patel P, Gazonas GA (2012) J Mater Des 35:144

    Article  CAS  Google Scholar 

  27. Grujicic M, Pandurangan B, Qiao R, Cheeseman BA, Roy WN, Skaggs RR, Gupta R (2008) Soil Dyn Earthquake Eng 28:20

    Article  Google Scholar 

  28. Grujicic M, Pandurangan B, Zecevic U, Koudela KL, Cheeseman BA (2007) Multidiscip Model Mater Struct 3:287–312

    Google Scholar 

  29. Holian BL, Straub GK (1979) Phys Rev Lett 43:1598

    Article  CAS  Google Scholar 

  30. Holian BL, Hoover WG, Moran B, Straub GK (1980) Phys Rev A 22:2498

    Article  Google Scholar 

  31. Castagna AM, Choi T, Dillon GP, Runt J (2012) Macromolecules (submitted for publication)

Download references

Acknowledgements

The material presented in this paper is based on work supported by the Office of Naval Research (ONR) research contract entitled “Elastomeric Polymer-By-Design to Protect the Warfighter Against Traumatic Brain Injury by Diverting the Blast Induced Shock Waves from the Head”, Contract Number 4036-CU-ONR-1125 as funded through the Pennsylvania State University, the Army Research Office (ARO) research contract entitled “Multilength Scale Material Model Development for Armor-grade Composites”, Contract Number W911NF-09-1-0513, and the Army Research Laboratory (ARL) research contract entitled “Computational Analysis and Modeling of Various Phenomena Accompanying Detonation Explosives Shallow-Buried in Soil” Contract Number W911NF-06-2-0042. The authors are indebted to Drs. Roshdy Barsoum of ONR and Larry C. Russell, Jr. of ARO for their continuing support and interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grujicic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Yavari, R., Snipes, J.S. et al. Molecular-level computational investigation of shock-wave mitigation capability of polyurea. J Mater Sci 47, 8197–8215 (2012). https://doi.org/10.1007/s10853-012-6716-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6716-4

Keywords

Navigation