Skip to main content
Log in

Modeling and experiments in dissolutive wetting: a review

  • HTC 2012
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Wetting, phase change, and reaction in high temperature systems (e.g., a liquid metal on a metal substrate) are complex phenomena that are only partially understood. These phenomena occur in joining processes, thin film processing and sintering among others. Dissolutive wetting is characterized by chemical and physical processes that span a broad range of spatial and temporal scales. While experiments are difficult to conduct, there have been a number of experimental investigations of dissolutive wetting in metal–metal systems and a short review of these studies is presented. Although limited, recently there have been studies comparing results, such as spreading rate and dissolution depth, from experiments to those from computational simulations. For dissolutive wetting in metal systems it is difficult to observe much of the spreading process experimentally. Computational models may provide better understanding of many aspects of dissolutive wetting. Models of dissolutive wetting incorporate knowledge from chemical thermodynamics, phase transformations, capillary behavior, and multi-phase transport. A number of computational models have appeared in the literature over the last 10 years. Dissolutive wetting has been studied using a broad range of approaches from molecular dynamics to continuum based models at the drop scale that include hydrodynamic transport using different levels of sophistication. We present a comprehensive review of the modeling approaches that have been used to study dissolutive wetting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yost F, Romig A (1988) Mater Res Soc Symp Proc 108:385

    Article  CAS  Google Scholar 

  2. Landry K, Rado C, Voitovich T, Eustathopoulos N (1997) Acta Mater 45:3079

    Article  CAS  Google Scholar 

  3. Mortensen A, Drevet B, Eustathopoulos N (1997) Scripta Mater 36:645

    Article  CAS  Google Scholar 

  4. Eustathopoulos N, Garandet J, Drevet B (1998) Phil Trans R Soc Lond A 356:871

    Article  CAS  Google Scholar 

  5. Voitovitch R, Mortensen A, Hodaj F, Eustathopoulos N (1999) Acta Mater 47:1117

    Article  CAS  Google Scholar 

  6. Eustathopoulos N (1998) Acta Mater 46:2319

    CAS  Google Scholar 

  7. Dezellus O, Hodaj F, Eustathopoulos N (2002) Acta Mater 50:4741

    Article  CAS  Google Scholar 

  8. Dezellus O, Eustathopoulos N (2010) J Mater Sci 45:4256

    Google Scholar 

  9. Saiz E, Benhassine M, De Coninck J, Tomsia A (2010) Scripta Mater 62:934

    Article  CAS  Google Scholar 

  10. Benhassine M, Saiz E, Tomsia A, De Coninck J (2010) Acta Mater 58:2068

    Article  CAS  Google Scholar 

  11. Kozlova O, Voytovych R, Protsenko P, Eustathopoulos N (2010) J Mater Sci 45:2099

    Article  CAS  Google Scholar 

  12. Protsenko P, Garandet J-P, Voytovych R, Eustathopoulos N (2010) Acta Mater 58:6565

    Article  CAS  Google Scholar 

  13. Warren JA, Boettinger WJ, Roosen AR (1998) Acta Mater 46:3247

    Article  CAS  Google Scholar 

  14. Yin L, Murray BT, Singler TJ (2006) Acta Mater 54:3561

    Article  CAS  Google Scholar 

  15. Yin L, Meschter SJ, Singler TJ (2004) Acta Mater 52:2873

    Article  CAS  Google Scholar 

  16. McKinley G (2005) Rheology Bull 74:6

    Google Scholar 

  17. Tanner LH (1979) J Phys D 12:1273

    Article  Google Scholar 

  18. Biance A, Clanet C, Quéré D (2004) Phys Rev E 69:016301

    Article  Google Scholar 

  19. Saiz E, Tomsia A, Rauch N, Scheu C, Ruehle M, Benhassine M, Seveno D, De Coninck J (2007) Phys Rev E 76:041602

    Article  CAS  Google Scholar 

  20. Bird J, Mandre S, Stone H (2008) Phys Rev Lett 100:234501

    Article  Google Scholar 

  21. Courbin L, Bird J, Reyssat M, Stone H (2009) J Phys: Condens Matter 21:464127

    Article  CAS  Google Scholar 

  22. Yin L, Murray BT, Su S, Sun Y, Efraim Y, Taitelbaum H, Singler TJ (2009) J Phys: Condens Matter 21:464130

    Article  Google Scholar 

  23. Yin L (2005) Reactive wetting and spreading in binary metallic systems. PhD Dissertation, Dept Mech Eng, SUNY, Binghamton

  24. Sharps P, Tomsia A, Pask J (1981) Acta Metall 29:855

    Article  CAS  Google Scholar 

  25. Yost F, O’Toole E (1998) Acta Mater 46:5143

    Article  CAS  Google Scholar 

  26. Dussan VEB (1979) Annu Rev Fluid Mech 11:371

    Article  Google Scholar 

  27. de Gennes PG (1985) Rev Mod Phys 57:827

    Article  Google Scholar 

  28. Berg JC (1993). In: JC Berg (ed) Wettability. Marcel Dekker, New York

  29. Blake TD (2006) J Colloid Interface Sci 299:1

    Article  CAS  Google Scholar 

  30. Dussan VEB, Davis SH (1974) J Fluid Mech 65:71

    Article  Google Scholar 

  31. Shikhmurzaev YD (2008) In: Capillary flows with forming interfaces. Chapman & Hall, Boca Raton

    Google Scholar 

  32. Braun RJ, Murray BT, Boettinger WJ, McFadden GB (1995) Phys Fluids 7:1797

    Article  CAS  Google Scholar 

  33. Su S, Yin L, Sun Y, Murray BT, Singler TJ (2009) Acta Mater 57:3110

    Article  CAS  Google Scholar 

  34. Webb EB, Grest GS, Heine DR, Hoyt JJ (2005) Acta Mater 53:3163

    Article  CAS  Google Scholar 

  35. Muradoglu M, Tasoglu S (2010) Computers Fluids 39:615

    Article  Google Scholar 

  36. Su S (2012) The development of computational models for studying wetting, evaporation and thermal transport for electronics packaging applications, PhD Dissertation, Dept Mech Eng, SUNY, Binghamton

  37. Ding H, Spelt PDM (2007) J Fluid Mech 576:287

    Article  Google Scholar 

  38. Yue P, Zhou G, Feng JJ (2010) J Fluid Mech 645:279

    Article  Google Scholar 

  39. Carlson A, Do-Quang M, Amberg G (2009) Phys Fluids 21:121701

    Article  Google Scholar 

  40. W. Villanueva W, K. Gronhagen K, Amberg, Agren J (2008) Phys Rev E 77:056313

  41. Villanueva W, Boettinger WJ, Warren JA, Amberg G (2009) Acta Mater 57:6022

    Article  CAS  Google Scholar 

  42. Wheeler D, Warren JA, Boettinger WJ (2010) Phys Rev E 82:051601

    Article  Google Scholar 

  43. Li J, Hesse M, Ziegler J (2005) J Comp Phys 208:289

    Article  Google Scholar 

  44. Donea J, Giuliani S, Halleux JP (1982) Comp Meth Appld Mech Eng 33:689

    Article  Google Scholar 

  45. Hu HH, Patankar NA, Zhu MY (2001) J Comp Phys 169:427

    Article  CAS  Google Scholar 

  46. Kumar V, Durst F, Ray S (2006) Num Heat Transfer B 49:299

    Article  Google Scholar 

  47. E. Saiz E, Tomsia AP (2004) Nat Mater 3:903

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. James Bird, James Warren and William Boettinger for their valuable discussions. They would also like to thank Drs. Nikos Eustathopoulos and K. L. Mittal and the two reviewers for their constructive critical and editorial comments. This study was supported, in part, by the National Science Foundation under Grant No. DMR-0606408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singler, T.J., Su, S., Yin, L. et al. Modeling and experiments in dissolutive wetting: a review. J Mater Sci 47, 8261–8274 (2012). https://doi.org/10.1007/s10853-012-6622-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6622-9

Keywords

Navigation