Skip to main content
Log in

In situ investigation of the gas–solid interaction between high-alloyed steel powder and nitrogen by energy dispersive diffraction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study investigates the temperature-dependent gas–solid interaction between gaseous nitrogen and two different high-alloyed steel powders: CrMn austenitic steel X40MnCrN19-17, and vanadium-rich cold-work tool steel X245VCrMo9-4-4. A time- and temperature-resolved synchrotron study was performed to investigate the phase composition of the powder materials during continuous heating. In addition, the nitrogen uptake of each phase was investigated by measuring the lattice constant of the respective phase. Thermodynamic calculations of the phase composition and the amount of dissolved interstitials in the calculated phases were performed and compared to the experimental results. This study reveals that heating in gaseous nitrogen leads to nitrogen uptake into both steels, which influences the phase composition. The first gas–solid interaction starts at 700 °C. Depending on the chemical composition of the steel powder, nitrogen is measured to be dissolved in different phases. Thermodynamic calculations were used to predict the phases in which nitrogen is dissolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Berns H, Edenhofer B, Zaugg R (2004) Trans Mater Heat Treat 25(5):354

    CAS  Google Scholar 

  2. Stinville JC, Templier C, Villechaise P, Pichon L (2011) J Mater Sci 46:5503. doi:10.1007/s10853-011-5494-8

    Article  CAS  Google Scholar 

  3. Reis RF, Maliska AM, Borges PC (2011) J Mater Sci 46:846. doi:10.1007/s10853-010-4827-3

    Article  CAS  Google Scholar 

  4. Gavriljuk VG, Berns H (1999) High Nitrogen Steels. Springer, Berlin

    Google Scholar 

  5. Weber S, Theisen W, Castro F, Pyzalla A (2009) Mater Sci Eng A 515(1–2):175

    Google Scholar 

  6. Aguirre I, Gimenez S, Talacchia S, Gómez-Acebo T, Iturriza I (1999) Powder Metall 42(4):353–357

    Article  CAS  Google Scholar 

  7. Hill H, Weber S, Siebert S, Huth S, Theisen W (2010) Metall Mater Trans A 41(2):686

    Article  Google Scholar 

  8. Giménez S, Iturriza I (2003) Study of the sintering behaviour of PM HSS under Nitrogen atmospheres: Application to alloy design. Congreso Europeo de Metalurgia de Polvos, Valencia

    Google Scholar 

  9. Weber S, Theisen W (2011) Int J Mater Res 102(1):17

    Article  CAS  Google Scholar 

  10. Riedner S (2010) Höchstfeste nichtrostende austenitische CrMn-Stähle mit (C + N). Doctoral Thesis, Chair of Materials Technology, Ruhr-Universität Bochum

  11. Mujica RonceryL, Weber S, Theisen W (2010) Metall Mater Trans A 41A:2471

    Article  Google Scholar 

  12. Krasokha N, Huth S, Zumsande K, Weber S, Theisen W (2010) In: European powder metallurgy association (Ed) World PM 2010 Florence, Proceedings, Vol 2, pp 259–266

  13. Riedner S, Nabiran N, Berns H (2009) In: Svyazhin AG, Prokoshkina VG, Kossyrev KL (eds) Proceedings of 10-th international conference on high nitrogen steels (HNS 09), MISIS, Moskau, pp 156–161

  14. Vanderschaeve F, Taillard R, Foct J (1995) J Mater Sci 30:6035. doi:10.1007/BF01151525

    Article  CAS  Google Scholar 

  15. Frisk K (2008) Calphad 32(2):326

    Article  CAS  Google Scholar 

  16. Sundmann B, Shi P, Bratberg J (2009) Thermo-Calc Software AB, TCS Steels/Fe-Alloys Database, Version 6.2, Sweden

  17. Kromm A, Kannengiesser T, Gibmeier J (2010) Mater Sci Forum 638–642:3769

    Article  Google Scholar 

  18. Genzel C, Denks IA, Gibmeier J, Klaus M, Wagener G (2007) Nucl Instrum Methods Phys Res A 578:23

    Article  CAS  Google Scholar 

  19. Apel D, Klaus M, Genzel C, Balzar D (2011) Rietveld refinement of energy-dispersive synchrotron measurements. Z. Kristallogr. 226, Accepted for publication 14 Oct 2011

  20. Spieß L, Teichert G, Schwarzer R, Behnken H, Genzel C (2009) Moderne Röntgenbeugung. Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker. 2. Auflage, Vieweg+Teubner, Wiesbaden

  21. Bolef DI, Smith RE, Miller JG (1971) Phys Rev B 3:4100

    Article  Google Scholar 

  22. Ledbetter HM, Austin MW (1987) Mater Sci Technol 3:101

    CAS  Google Scholar 

  23. Cheng Liu, Böttger A, de Keijser TH, Mittemeijer EJ (1990) Scripta Metall et Mater 24(3):509

    Article  CAS  Google Scholar 

  24. Zumsande K, Krasokha N, Huth S, Weber S, Theisen W (2011) In: European powder metallurgy association (Ed) EuroPM 2011 Barcelona, Proceedings, Vol 3, p 187ff

  25. Duwez P, Odell F (1950) J Electrochem Soc 97(10):299

    Article  CAS  Google Scholar 

  26. Hahn H (1949) Zeitschrift für anorganische Chemie 258(1–2):58

    Article  CAS  Google Scholar 

  27. Lipatnikov VN, Gusev AI (2007) Inorg Mater 43(8):827

    Article  CAS  Google Scholar 

  28. Brauer G, Schnell WD (1964) J Less Common Met 7(1):23

    Article  CAS  Google Scholar 

  29. Brauer G, Schnell WD (1964) J Less Common Met 6(4):326

    Article  CAS  Google Scholar 

  30. Kieffer R, Nowotny H, Ettmayer P, Freudhofmeier M (1970) Monatshefte für Chemie 101:165

    Article  Google Scholar 

  31. Fast JD, Verrijp MB (1955) JISI 180:337

    CAS  Google Scholar 

  32. Fast JD (1971) Interaction of metals and gases. Vol. 2: kinetics and mechanism. Philips Technical Library, Eindhoven

    Google Scholar 

  33. Weddeling A, Zumsande K, Hryha E, Huth S, Nyborg L, Weber S (2011) In: European powder metallurgy association (Ed) EuroPM 2011 Barcelona, Proceedings, Vol 2, S. 15ff

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft under the project “Untersuchung des Flüssigphasensinterns vorlegierter Metallpulver auf Eisenbasis und dessen Beeinflussung durch Gas-Festkörperreaktionen” (WE 4436/3-1 and TH 531/8-1). The authors gratefully acknowledge the Helmholtz Zentrum Berlin for the opportunity to perform measurements at Bessy II at Beamline EDDI. Thanks are also due to Prof. Genzel and Dr. Klaus for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zumsande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zumsande, K., Krasokha, N., Huth, S. et al. In situ investigation of the gas–solid interaction between high-alloyed steel powder and nitrogen by energy dispersive diffraction. J Mater Sci 47, 3214–3226 (2012). https://doi.org/10.1007/s10853-011-6159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6159-3

Keywords

Navigation