Skip to main content
Log in

Structural, optical, and opto-dielectric properties of W-doped Ga2O3 thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A layer-by-layer deposition technique of Ga2O3 and WO3 by vacuum evaporation method on glass and silicon substrates and subsequent annealing in oxygen atmosphere to form W-doped Ga2O3 (or Ga2O3:W) films was attempted here. The W doping level was measured by the energy dispersive X-ray fluorescence radiographic analysis. The crystalline structure of Ga2O3:W films was determined by the X-ray diffraction method. Experimental data indicate that W6+ ions doped in host Ga2O3 forming solid solutions (SS), in which the molar ratio (r) of W to Ga is 9.6, 13.4, 18.2, 22.7 and 30.4%. All the prepared SS have the known β-Ga2O3 crystalline structure. This doping controls the optical and electrical properties of the host Ga2O3. The optical properties of the prepared Ga2O3:W films were studied by UV–VIS–NIR absorption spectroscopy method from which the bandgap was determined. In general, it was found that the prepared Ga2O3:W films are wide-bandgap semiconductors with bandgap 4.69–4.47 eV and have dielectric properties. The optical sensitivity of the capacitance, dissipation factor and ac-conductance of the Ga2O3:W films grown on Si was studied as a function of W-doping level. It was observed that the prepared Ga2O3:W film of r = 22.7% has the highest photosensitivity amongst the other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trinchi A, Wlodarski W, Li YX (2004) Sens Actuators B 100:94

    Article  Google Scholar 

  2. Miyata T, Nakatani T, Minami T (2000) J Lumin 87–89:1183

    Article  Google Scholar 

  3. Zhang HZ, Kong YC, Wang YZ, Du X, Bai ZG, Wang JJ, Yu DP, Ding Y, Hang QL, Feng SQ (1999) Solid State Commun 109:677

    Article  CAS  Google Scholar 

  4. Penner S, Liu X, Klötzer B, Klauser F, Jenewein B, Bertel E (2008) Thin Solid Films 516:4742

    Article  CAS  Google Scholar 

  5. Orita M, Ohta H, Hirano M, Hosono H (2000) Appl Phys Lett 77:4166

    Article  CAS  Google Scholar 

  6. Matsuzaki K, Yanagi H, Kamiya T, Hiramatsu H, Nomura K, Hirano M, Hosono H (2006) Appl Phys Lett 88:092106

    Article  Google Scholar 

  7. Oshima T, Okuno T, Fujita S (2007) Jpn J Appl Phys 46:7217

    Article  CAS  Google Scholar 

  8. Hayashi H, Huang R, Ikeno H, Oba F, Yoshioka S, Tanaka I, Sonoda S (2006) Appl Phys Lett 89:181903

    Article  Google Scholar 

  9. Bonivardi AL, Chiavassa DL, Querini CA, Baltanas MA (2000) Stud Surf Sci Catal 130D:3747

    Article  CAS  Google Scholar 

  10. Meriaudeau P, Naccache C (1991) Appl Catal 73:L13

    Article  CAS  Google Scholar 

  11. Kim H-G, Kim W-T (1987) J Appl Phys 62:2000

    Article  CAS  Google Scholar 

  12. Battiston GA, Gerbasi R, Porchia M, Bertoncello R, Caccavale F (1996) Thin Solid Films 279:115

    Article  CAS  Google Scholar 

  13. Tomm Y, Reiche P, Klimm D, Fukuda T (2000) J Cryst Growth 220:510

    Article  CAS  Google Scholar 

  14. Takakura K, Koga D, Ohyama H, Rafi JM, Kayamoto Y, Shibuya M, Yamamoto H, Vanhellemont J (2009) Phys B 404:4854

    Article  CAS  Google Scholar 

  15. Zhang Y, Yan J, Li Q, Qu C, Zhang L, Xie W (2011) Mater Sci Eng B 176:846

    Article  CAS  Google Scholar 

  16. Fleischer M, Meixner H (1993) J Appl Phys 74:300

    Article  CAS  Google Scholar 

  17. Orita M, Hiramatsu H, Ohta H, Hirano M, Hosono H (2002) Thin Solid Films 411:134

    Article  CAS  Google Scholar 

  18. Matsuzaki K, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H (2006) Thin Solid Films 496:37

    Article  CAS  Google Scholar 

  19. Fu D, Kang TW (2002) Jpn J Appl Phys 41:L1437

    Article  CAS  Google Scholar 

  20. Li Y, Trinchi A, Wlodarski W, Galatsis K, Kalantar-zadeh K (2003) Sens Actuators B Chem 93:431

    Article  Google Scholar 

  21. Zhang JG, Xia CG, Deng Q (2006) J Phys Chem Solids 67:1656

    Article  CAS  Google Scholar 

  22. Su Y, Gao M, Meng X, Chen Y, Zhou Q, Li L, Feng Y (2009) J Phys Chem Solids 70:1062

    Article  CAS  Google Scholar 

  23. Hai-Lin M, Duo-Wang F (2009) Chin Phys Lett 26:117302

    Article  Google Scholar 

  24. Lang AC, Fleischer M, Meixner H (2000) Sens Actuators B Chem 66:80

    Article  Google Scholar 

  25. Zhang Y, Yan J, Li Q, Qu C, Zhang L, Li T (2011) Phys B 406:3079

    Article  CAS  Google Scholar 

  26. Valet M, Hoffman DM (2001) Chem Mater 13:2135

    Article  CAS  Google Scholar 

  27. Huang C, Ludviksson A, Martin RM (1992) Surf Sci 265:314

    Article  CAS  Google Scholar 

  28. Jaklevic JM, Goulding FS (1978) In: Herglotz HK, Birks LS (eds) X-ray spectrometry. M. Dekker, New York 50

    Google Scholar 

  29. JCPDS (2011) Powder diffraction file, joint committee for powder diffraction studies (JCPDS), file No.: 41-1103. JCPDS, East Melbourne

  30. Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K, Tanaka I (2007) J Phys Condens Matter 19:346211 (11 pp)

    Article  Google Scholar 

  31. JCPDS (2011) Powder diffraction file, joint committee for powder diffraction studies (JCPDS), file no.: 72-0677. JCPDS, East Melbourne

  32. Mohammad AA, Gillet M (2002) Thin Solid Films 408:302

    Article  Google Scholar 

  33. Kaelble EF (ed) (1967) Handbook of X-rays for diffraction, emission, absorption, and microscopy. McGraw-Hill, New York, pp 5–17

    Google Scholar 

  34. Hong WQ (1989) J Phys D Appl Phys 22:1384

    Article  Google Scholar 

  35. Rodríguez J, Gómez M, Ederth J, Niklasson GA, Granqvist CG (2000) Thin Solid Films 365:119

    Article  Google Scholar 

  36. Zheng Y, Kikuchi K (1997) Appl Opt 36:6325

    Article  CAS  Google Scholar 

  37. Tauc J, Abeles F (eds) (1969) Optical properties of solids. North Holland, Amsterdam

  38. Koffyberg FP, Dwight K, Wold A (1979) Solid State Commun 30:433

    Article  CAS  Google Scholar 

  39. Washizu E, Yamamoto A, Abe Y, Kawamura M, Sasaki K (2003) Solid State Ion 165:175

    Article  CAS  Google Scholar 

  40. Zhang Y, Yan J, Zhao G, Xie W (2010) Phys B 405:3899

    Article  CAS  Google Scholar 

  41. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York, p 397

    Google Scholar 

  42. Zhou Y, Ahyi C, Isaacs-Smith T, Bozack M, Tin C-C, Williams J, Park M, Cheng AJ, Park J-H, Kim D-J, Wang D, Preble EA, Hanser A, Evans K (2008) Solid State Electron 52:756

    Article  CAS  Google Scholar 

  43. Passlack M, Hunt NEJ, Schubert EF, Zydzik GJ, Hong M, Mannaerts JP, Opila RL, Fischer RJ (1994) Appl Phys Lett 64:2715

    Article  CAS  Google Scholar 

  44. Mohamed M, Unger I, Janowitz C, Manzke R, Galazka Z, Uecker R, Fornari R (2011) J Phys Conf Ser 286:012027

    Article  Google Scholar 

  45. Korbutowicz R, Prazmowska J (2010) In: Grym J (ed) Semiconductor technologies, ISBN 978-953-307-080-3. In Tech, Bratislava

  46. Lin LM, Luo Y, Lai PT, Lau KM (2006) Thin Solid Films 515:2111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dakhel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 384 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dakhel, A.A. Structural, optical, and opto-dielectric properties of W-doped Ga2O3 thin films. J Mater Sci 47, 3034–3039 (2012). https://doi.org/10.1007/s10853-011-6134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6134-z

Keywords

Navigation