Skip to main content
Log in

A casein-polysaccharide hybrid hydrogel cross-linked by transglutaminase for drug delivery

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A protein-polysaccharide hydrogel was reported as a biocompatible, biodegradable, and non-toxic material that had biomedical applications such as drug delivery. The hydrogel, composed of 10% casein and 1% konjac glucomannan (KGM), was formed with 0.4 wt% transglutaminase (MTG) as the cross-linker. The physicochemical properties of the protein-polysaccharide hydrogel were investigated by SEM observation, FT-IR analysis, swelling ratio test, and stability test. The results of the stability test proved that the hydrogel with KGM had an obviously improved stability. Its degradation rate also decreased from 100% to less than 60% compared with the hydrogel without KGM at the end of the test. The results of the swelling ratio test demonstrated that the addition of KGM restricted the mobility of the chains, and decreased the swelling ratio of the hydrogel. The results of the FT-IR revealed hydrogen bond interactions during the gelation process upon the addition of KGM. To investigate in vitro release behavior, docetaxel was chosen as a model drug incorporated into the casein/KGM hydrogels. The hydrogel with 1% KGM exhibited a good drug release behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim SJ, Shin SR, Lee YM, Kim SI (2003) J Appl Polym Sci 87(12):2011. doi:10.1002/app.11699

    Article  CAS  Google Scholar 

  2. Bajpai A, Saini R (2005) Polym Int 54(5):796. doi:10.1002/pi.1773

    Article  CAS  Google Scholar 

  3. Song F, Zhang LM, Shi JF, Li NN (2010) Colloid Surf B-Biointerfaces 79(1):142. doi:10.1016/j.colsurfb.2010.03.045

    Article  CAS  Google Scholar 

  4. Maltais A, Remondetto GE, Subirade M (2009) Food Hydrocolloids 23(7):1647. doi:10.1016/j.foodhyd.2008.12.006

    Article  CAS  Google Scholar 

  5. Kyle S, Aggeli A, Ingham E, McPherson MJ (2010) Biomaterials 31(36):9395. doi:10.1016/j.biomaterials.2010.08.051

    Article  CAS  Google Scholar 

  6. Liu JH, Li L, Cai YY (2006) Eur Polym J 42(8):1767. doi:10.1016/j.eurpolymj.2006.03.005

    Article  CAS  Google Scholar 

  7. Fan JY, Wang K, Liu MM, He ZM (2008) Carbohydr Polym 73(2):241. doi:10.1016/j.carbpol.2007.11.027

    Article  CAS  Google Scholar 

  8. Alvarez-Mancenido F, Landin M, Martinez-Pacheco R (2008) Eur J Pharm Biopharm 69(2):573. doi:10.1016/j.ejpb.2008.01.004

    Article  CAS  Google Scholar 

  9. Tada D, Tanabe T, Tachibana A, Yamauchi K (2005) J Biosci Bioeng 100(5):551. doi:10.1263/hbb.100.551

    Article  CAS  Google Scholar 

  10. Wen X, Cao XL, Yin ZH, Wang T, Zhao CS (2009) Carbohydr Polym 78(2):193. doi:10.1016/j.carbpol.2009.04.001

    Article  CAS  Google Scholar 

  11. Wong KKH, Zinke-Allmang M, Wan WK (2010) J Mater Sci 45(9):2456. doi:10.1007/s10853-010-4217-x

    Article  CAS  Google Scholar 

  12. Wen X, Wang T, Wang ZY, Li L, Zhao CS (2008) Int J Biol Macromol 42(3):256. doi:10.1016/j.ijbiomac.2007.11.006

    Article  CAS  Google Scholar 

  13. Jin R, Hiemstra C, Zhong Z, Feijen J (2007) Biomaterials 28(18):2791. doi:10.1016/j.biomaterials.2007.02.032

    Article  CAS  Google Scholar 

  14. Sajeesh S, Sharma CP (2006) J Biomed Mater Res Part B 76B(2):298. doi:10.1002/jbm.b.30372

    Article  CAS  Google Scholar 

  15. Manju S, Antony M, Sreenivasan K (2010) J Mater Sci 45(15):4006. doi:10.1007/s10853-010-4474-8

    Article  CAS  Google Scholar 

  16. Picard J, Giraudier S, Larreta-Garde V (2009) Soft Matter 5(21):4198. doi:10.1039/b907616f

    Article  CAS  Google Scholar 

  17. Doumeche B, Picard J, Larreta-Garde W (2007) Biomacromolecules 8(11):3613. doi:10.1021/bm700767u

    Article  CAS  Google Scholar 

  18. Liu CH, Chen YQ, Chen JG (2010) Carbohydr Polym 79(3):500. doi:10.1016/j.carbpol.2009.08.024

    Article  CAS  Google Scholar 

  19. Zhang NY, Liu MZ, Shen YG, Chen J, Dai LL, Gao CM (2011) J Mater Sci 46(5):1523. doi:10.1007/s10853-010-4957-7

    Article  CAS  Google Scholar 

  20. Lizarraga MS, Piante Vicin DD, González R, Rubiolo A, Santiago LG (2006) Food Hydrocolloids 20(5):740. doi:10.1016/j.foodhyd.2005.07.007

    Article  CAS  Google Scholar 

  21. Tavares C, Lopes da Silva JA (2003) Int Dairy J 13(8):699. doi:10.1016/s0958-6946(03)00095-5

    Article  CAS  Google Scholar 

  22. Matia-Merino L, Lau K, Dickinson E (2004) Food Hydrocolloids 18(2):271. doi:10.1016/s0268-005x(03)00083-3

    Article  CAS  Google Scholar 

  23. Fitzsimons SM, Mulvihill DM, Morris ER (2008) Food Hydrocolloids 22(4):576. doi:10.1016/j.foodhyd.2007.01.013

    Article  CAS  Google Scholar 

  24. Abe H, Goto M, Kamiya N (2010) Chem Commun (Camb) 46(38):7160. doi:10.1039/c0cc02133d

    Article  CAS  Google Scholar 

  25. Picard J, Giraudier S, Larreta-Garde W (2008) Biomacromolecules 9(1):13. doi:10.1021/bm700601n

    Article  CAS  Google Scholar 

  26. Livney YD (2010) Curr Opin Colloid Interface Sci 15(1–2):73. doi:10.1016/j.cocis.2009.11.002

    Article  CAS  Google Scholar 

  27. Jaros D, Jacob M, Otto C, Rohm H (2010) Int Dairy J 20(5):321. doi:10.1016/j.idairyj.2009.11.021

    Article  CAS  Google Scholar 

  28. Monogioudi E, Creusot N, Kruus K, Gruppen H, Buchert J, Mattinen ML (2009) Food Hydrocolloids 23(7):2008. doi:10.1016/j.foodhyd.2009.03.011

    Article  CAS  Google Scholar 

  29. Yu HQ, Huang A, Xiao CB (2006) J Appl Polym Sci 100(2):1561. doi:10.1002/app.23634

    Article  CAS  Google Scholar 

  30. Huang L, Takahashi R, Kobayashi S, Kawase T, Nishinari K (2002) Biomacromolecules 3(6):1296. doi:10.1021/bm0255995

    Article  CAS  Google Scholar 

  31. He ZM, Zhang J, Huang DP (2001) Biotechnol Lett 23(5):389. doi:10.1023/A:1005615204340

    Article  CAS  Google Scholar 

  32. Montero A, Fossella F, Hortobagyi G, Valero V (2005) Lancet Oncol 6(4):229. doi:10.1016/S1470-2045(05)70094-2

    Article  CAS  Google Scholar 

  33. Markman M (2003) Support Care Cancer 11(3):144. doi:10.1007/s00520-002-0405-9

    Google Scholar 

  34. Franson NM, Peppas NA (1983) J Appl Polym Sci 28(4):1299. doi:10.1002/app.1983.070280404

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports of the Natural Science Foundation of China (Grant Nos. 20806057 and 31071509), and of the Ministry of Education (Grant Nos. 200800561004 and NCET-08-0386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongxin Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, W., Su, R., Qi, W. et al. A casein-polysaccharide hybrid hydrogel cross-linked by transglutaminase for drug delivery. J Mater Sci 47, 2045–2055 (2012). https://doi.org/10.1007/s10853-011-6005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6005-7

Keywords

Navigation