Skip to main content
Log in

Small-angle neutron scattering of multiphase secondary hardening steels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Alloying secondary hardening steels with Ni and Al allows the precipitation of an intermetallic phase B2-NiAl in addition to the classical secondary carbides precipitation, adding up the advantages of both types of precipitation (Erlach et al. Mater Sci Eng A 429:96, 2006; Erlach et al. Int J Microstruct Mater Prop 3:373, 2008). Small-angle neutron scattering experiments were carried out to analyse the nanometric scale precipitation of a martensitic steel containing a double precipitation of carbides and intermetallic phase. The precipitates size, volume fraction and chemical composition for both carbides and intermetallic phases according to the tempering time were estimated and discussed. In addition, experimental cobalt-free grades containing a single precipitation or a double precipitation were manufactured and analysed. Relationship between measured tensile yield strengths and the nanometre-sized particles are suggested, showing that both populations of precipitates have a relevant impact on the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Senuma T (2001) ISIJ Int 41:520

    Article  CAS  Google Scholar 

  2. Garrison WM Jr, Rhoads MA (1996) Trans Indian Inst Met 49:151

    CAS  Google Scholar 

  3. Jeniski RA, Bayha TD (2004) 15th Advanced aerospace materials and processes conference and exposition, Seattle, 7–10 June 2004

  4. Carinci GM, Olson GB, Liddle JA, Chang L, Smith GDW (1990) In: Olson GB, Azrin M, Wright ES (eds) Proceedings of the 34th Sagamore Army materials conference titled innovations in ultra-high strength steel technology, Lake George, New York, p 179

  5. Ayer R, Machmeier PM (1993) Metall Trans 24:1943

    Article  Google Scholar 

  6. Novotny PM (2007) US Patent Application Publication 0,113,931A1

  7. Xie X, Zeng Y, Wang M, Fan H (2011) In: Weng Y, Dong H, Gan Y (eds) Advanced steels. Springer, Berlin, p 93

  8. Cotton JP (1991) In: Lindner P, Zembs Th (eds) Neutron, X-ray and light scattering. Elsevier, Amsterdam, p 19

  9. Villars P, Calvert LD (1985) Pearson’s handbook of crystallographic data for intermetallic phases. American Society for Metals, Materials Park

  10. Sears VF (1992) Neutron News 3:26

    Article  Google Scholar 

  11. Kazjar F, Parette G (1980) Phys Rev B 22:5471

    Article  Google Scholar 

  12. Sanyal B, Bose SK (2000) Phys Rev B 62:12730

    Article  CAS  Google Scholar 

  13. Bardos DI, Beeby JL, Aldred AT (1979) Phys Rev 177:878

    Article  Google Scholar 

  14. Aldred AT (1976) Phys Rev B 14:219

    Article  CAS  Google Scholar 

  15. Wertheim MS (1963) Phys Rev Lett 10:321

    Article  Google Scholar 

  16. Thiele EJ (1963) J Chem Phys 39:474

    Article  Google Scholar 

  17. Mathon MH, de Novion CH (1999) J Phys IV Fr 9:127

    CAS  Google Scholar 

  18. Ashcroft NW, Lekner J (1966) Phys Rev 145:83

    Article  CAS  Google Scholar 

  19. Erlach SD, Leitner H, Bischof M, Clemens H, Danoix F, Lemarchand D, Siller I (2006) Mater Sci Eng A 429:96

    Article  Google Scholar 

  20. Danoix F, Danoix R, Akre J, Grellier A, Delagnes D (2011) J Microsc. doi:10.1111/j.1365-2818.2011.03537x

  21. Mathon MH, Barbu A, Dunstetter F, Maury F, Lorenzelli N, de Novion CH (1997) J Nucl Mater 245:224

    Article  CAS  Google Scholar 

  22. Reppich B (1993) In: Cahn RW, Haasen P, Kramer EJ, Mughrabi H (eds) Materials science and technology, vol 6, plastic deformation and fracture of materials. Wiley-VCH, Weinheim, p 311

  23. Mohles V, Nembach E (2001) Acta Mater 49:2405

    Article  CAS  Google Scholar 

  24. Hüther W, Reppich B (1978) Z Metallkunde 69:628

    Google Scholar 

  25. Labusch R, Schwarz RB (1978) J Appl Phys 49:5174

    Article  Google Scholar 

  26. Hong T, Freeman AJ (1991) Phys Rev B 43:6446

    Article  CAS  Google Scholar 

  27. Foreman AJE, Makin MJ (1967) Can J Phys 45:511

    Article  CAS  Google Scholar 

  28. Deschamps A, Militzer M, Poole WJ (2001) ISIJ International 41(2):196

    Article  CAS  Google Scholar 

  29. Nembach E (1983) Phys Status Solidi A 78:571

    Article  Google Scholar 

  30. Grimvall G, Sjödin S (1974) Phys Scr 10:340

    Article  CAS  Google Scholar 

  31. Ardell AJ (1985) Metall Trans A 16:2131

    Article  Google Scholar 

  32. Kocks UF, Argon AS, Ashby MF (1975) Prog Mater Sci 19:303

    Google Scholar 

  33. Massalski (1990) Binary alloys phase diagrams. ASM International, Materials Park

  34. Erlach S, Siller I, Leitner H, Clemens H (2008) Int J Microstruct Mater Prop 3:373

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikaël Perrut.

Appendices

Appendix 1

The form factor of a gaussian distribution of ellipsoids defined by r i , σ i and ell i (see “SANS experiments” section) has the following expression:

$$ |F_{\rm gauss}(q)|^2 = \frac{\int_0^{2r_i}{\frac{4\pi}{3} {\rm ell}_i r^6 \mathrm{e}^{- (r-r_i)^2/(2 \sigma_i^2)} |F_{\rm ell}(q)|^2 \mathrm{d}r}}{\int_0^{2r_i} {r^3 \mathrm{e}^{- (r-r_i)^2/(2 \sigma_i^2)} \mathrm{d}r}} $$
(16)

where F ell is given by

$$ |F_{\rm ell}(q)|^2 = \int\limits_0^1{|F_{\rm sph}(q)|^2 \left(qr_i\sqrt{1+ x^2({\rm ell}_i^2- 1)}\right) \mathrm{d}x} $$
(17)

The form factor of a sphere of radius r i is recalled:

$$ |F_{\rm sph}(q)|^2 = 9 \left( \frac{\sin qr_i - qr_i \cos qr_i}{(qr_i)^3} \right)^2 $$
(18)

Appendix 2

The shear modulus is considered as proportional to T m a −3 where T m is the melting point and a the cubic root of the volume per atom. For the sake of simplicity, it has been considered that \({\mathrm{M_2C}}\) shear modulus was a linear combination of \(\mathrm{Cr_2C}\) (75%) and \(\mathrm{Mo_2C}\) (25%). Iron is used as a reference. The calculation of shear modulus of \(\mathrm{Cr_2C}\) and \(\mathrm{Mo_2C}\) with the parameters given in the Table 3 leads to a \({\mathrm{M_2C}}\) shear modulus of 108 GPa. Melting points were found in [33].

Table 3 Estimation of the shear modulus of \({\mathrm{M_2C}}\) carbides (bold) from their melting temperature and cubic root of the volume per atom

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrut, M., Mathon, MH. & Delagnes, D. Small-angle neutron scattering of multiphase secondary hardening steels. J Mater Sci 47, 1920–1929 (2012). https://doi.org/10.1007/s10853-011-5982-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5982-x

Keywords

Navigation