Skip to main content
Log in

CALPHAD formalism for Portland clinker: thermodynamic models and databases

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The so-called CALPHAD method is widely used in metallurgy to predict phase diagrams of multi-component systems. The application of the method to oxide systems is much more recent, mainly because of the difficulty of modelling the ionic liquid phase. Since the 1980s, several models have been proposed by various communities. Thermodynamic databases for oxides are available and still under development. The purpose of this article is to discuss the distinct approaches of the method for the calculation of multi-component systems for Portland cement elaboration. The article gives a state of the art of the most recent experimental data and the various calculations for the CaO–Al2O3–SiO2 phase diagram. A literature review of the three binary sub-systems leads to main conclusions: (i) discrepancies are found in the literature for the selected experimental data, (ii) the phase diagram data in the reference books are not complete and up to date and (iii) the two-sublattices model and the modified quasichemical model can be equally used for the modelling of the aluminates liquid. The predictive feature of the CALPHAD method is illustrated using the CaO–Al2O3–SiO2 system with the two-sublattices model: extrapolated (predicted) and fully-assessed phase diagrams are compared in the clinkering zone of interest. The recent application of the predictive method for the calculations of high-order systems (taking into account Fe2O3, SO3, CaF2, P2O5,…) shows that the databases developed with the two-sublattices model and the modified quasichemical model are no longer equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The triangular symbol in the left-hand corner of the diagrams indicates that the figure has been calculated with the Thermo-Calc software. The condensed oxide notation is used for the defined compounds, excepted for the CaO, SiO2 and Al2O3 components.

  2. Note that Rankin firstly assigned the C12A7 phase to C5A3.

References

  1. Rankin GA, Wright FE (1915) Am J Sci 39:1

    Article  CAS  Google Scholar 

  2. Lea F (1998) Lea’s chemistry of cement and concrete, 4th edn. P.C. Hewlett, London

    Google Scholar 

  3. Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford Edition, London

    Book  Google Scholar 

  4. Butt YM, Timashev VV (1974) 6th international congress on the chemistry of cement, Moscow, September 1974, p 2

  5. Timashev VV (1980) 7th international congress on the chemistry of cement, Paris, p 1

  6. Maki I, Goto K (1982) Cem Concr Res 12:301

    Article  CAS  Google Scholar 

  7. de Noirfontaine M-N, Tusseau-Nenez S, Signes-Frehel M, Gasecki G, Girod-Labianca C (2009) J Am Ceram Soc 92(10):2337

    Article  Google Scholar 

  8. Saunders N, Miodownik AP (1998) CALPHAD (calculation of the phase diagrams): a comprehensive guide. Pergamon Materials Series, Oxford

    Google Scholar 

  9. Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics. The Calphad method. Cambridge University Press, New York

    Book  Google Scholar 

  10. Special issue of Calphad J 19(4):433 (1995)

  11. Hillert M (1980) Calphad 4(1):1

    Article  CAS  Google Scholar 

  12. Muggianu Y-M, Gambino M, Bros J-P (1975) J Chim Phys 72:83

    CAS  Google Scholar 

  13. Pelton AD, Blander M (1986) Metall Trans B 17:805

    Article  Google Scholar 

  14. Hillert M, Jansson B, Sundman B, Agren J (1985) Metall Trans A 16:261

    Google Scholar 

  15. Sundman B (1991) Calphad 15(2):109

    Article  CAS  Google Scholar 

  16. Sommer F (1982) Z Metallkd 73(2):72

    CAS  Google Scholar 

  17. Gaye H, Welfringer J (1984) 2nd international symposium, Warrendale, p 357

  18. Barry TI, Glasser FP (2000) Adv Cem Res 12(1):19

    Article  CAS  Google Scholar 

  19. Decterov SA, Kang Y-B, Jung I-H (2009) J Phase Equilib Diffus 30(5):443

    Article  CAS  Google Scholar 

  20. Kattner UR, Handwerker CA (2001) Z Metallkd 92(7):740

    CAS  Google Scholar 

  21. Levin EM, Robbins CR, McMurdie HF (1964) Phase diagrams for ceramists. The American Ceramic Society, Columbus, OH

    Google Scholar 

  22. Yamada T, Yoshimura M, Somiya S (1986) J Am Ceram Soc 69(10):C243

    Article  CAS  Google Scholar 

  23. Levin EM, McMurdie HF (1975) Phase diagrams for ceramists 1975 supplement. The American Ceramic Society, Columbus, OH

    Google Scholar 

  24. Tewhey JD, Hess PC (1979) Phys Chem Glasses 20(3):41

    CAS  Google Scholar 

  25. Hageman VBM, Van den Berg GJK, Janssen HJ, Oonk HAJ (1986) Phys Chem Glasses 27(2):100

    CAS  Google Scholar 

  26. Hillert M, Sundman B, Wang X (1990) Metall Trans B 21:303

    Article  Google Scholar 

  27. Hillert M, Sundman B, Wang X (1991) Calphad 15(1):53

    Article  CAS  Google Scholar 

  28. Huang WL, Hillert M, Wang X (1995) Metall Trans A 26:2293

    Article  Google Scholar 

  29. Tromel G, Fix W, Heinke R (1969) Hochtemperaturuntersuchungen bis 1900 °C an Calciumorthosilikat und Tricalciumsilikat Tonindustrie-Zeitung 93-1:1

  30. Elliott JF, Gleiser M (1960) Thermochemistry for steelmaking. Addison-Wesley, Reading, MA

    Google Scholar 

  31. Eriksson G, Wu P, Blander M, Pelton AD (1994) Can Metall Q 33(1):13

    CAS  Google Scholar 

  32. Somiya S. Tokyo Inst. Technology, Yokahama, unpublished work

  33. Taylor JR, Dinsdale AT (1990) Calphad 14(1):71

    Article  CAS  Google Scholar 

  34. Ball RGJ, Mignanelli MA, Barry TI, Gisby JA (1993) J Nucl Mater 201:238

    Article  CAS  Google Scholar 

  35. Zaitsev AI, Zemchenko M, Litvina AD, Mogutnov BM (1993) J Mater Chem 3(5):541

    Article  CAS  Google Scholar 

  36. Nurse RW, Welch JH, Majumdar AJ (1965) Trans J Br Ceram Soc 64:409

    CAS  Google Scholar 

  37. Nityanand N, Fine HA (1983) Metall Mater Trans B 14(4):685

    Google Scholar 

  38. Nurse RW, Welch JH, Majumdar AJ (1965) Trans J Br Ceram Soc 64:323

    CAS  Google Scholar 

  39. Muan A, Osborn EF (1965) Phase equilibria among oxides in steel-making. Addison-Wesley, Reading, MA

    Google Scholar 

  40. Chatterjee AK, Zhmoidin GI (1972) J Mater Sci 7:93. doi:10.1007/BF00549555

    Article  CAS  Google Scholar 

  41. Rolin M, Thanh PH (1965) Revue des Hautes Températures et Réfractaires 2:175

    CAS  Google Scholar 

  42. Hallstedt B (1990) J Am Ceram Soc 73(1):15

    Article  CAS  Google Scholar 

  43. Mao H, Selleby M, Sundman B (2004) Calphad 28:307

    Article  CAS  Google Scholar 

  44. Eriksson G, Pelton AD (1993) Metall Trans B 24:807

    Article  Google Scholar 

  45. Aramaki S, Roy R (1962) J Am Ceram Soc 45(5):229

    Article  CAS  Google Scholar 

  46. Bowen NL, Greig JW (1924) J Am Ceram Soc 7(4):238

    Article  CAS  Google Scholar 

  47. Aksay IA, Pask JA (1975) J Am Ceram Soc 58(11–12):507

    Article  CAS  Google Scholar 

  48. Davis RF, Pask JA (1972) J Am Ceram Soc 55(10):525

    Article  CAS  Google Scholar 

  49. Konopicky K (1956) Bulletin de la Société française de Céramiques 33:3

    Google Scholar 

  50. Toropov NA, Galakhov FY (1951) Doklady Akademii Nauk SSSR 78(2):299

    CAS  Google Scholar 

  51. Klug FJ, Prochazka S, Doremus RH (1987) J Am Ceram Soc 70(10):750

    Article  CAS  Google Scholar 

  52. Hamano K, Sato T, Nakagawa Z (1986) Yogyo-Kyokai-Shi 94(8):818

    CAS  Google Scholar 

  53. Okada K, Otsuka N (1987) J Am Ceram Soc 70(10):C245

    Article  Google Scholar 

  54. Prochazka S, Klug FJ (1983) J Am Ceram Soc 66(12):874

    Article  CAS  Google Scholar 

  55. Mao H, Selleby M, Sundman B (2005) J Am Ceram Soc 88(9):2544

    Article  CAS  Google Scholar 

  56. Risbud SH, Pask JA (1978) J Am Ceram Soc 61(1–2):63

    Article  CAS  Google Scholar 

  57. Horibe T, Kuwabara S (1967) Bull Chem Soc Jpn 40(4):972

    Article  CAS  Google Scholar 

  58. Staronka A, Pham H, Rolin M (1968) Revue Internationale des Hautes Températures et des Réfractaires 5:111

    CAS  Google Scholar 

  59. Fabrichnaya OB, Costa e Silva A, Aldinger F (2004) Z Metallkd 95(9):793

    CAS  Google Scholar 

  60. Welch JH (1960) Nature 186:545

    Article  CAS  Google Scholar 

  61. Yazhenskikh E, Hack K, Müller M (2008) Calphad 32:195

    Article  CAS  Google Scholar 

  62. Mao H, Hillert M, Selleby M, Sundman B (2006) J Am Ceram Soc 89(1):298

    Article  CAS  Google Scholar 

  63. Pelton AD (2005) Miner Process Extract Metall (Trans Inst Min Metall C) 114:C172

    Google Scholar 

  64. Andersson JO, Helander T, Hoglund L, Shi P, Sundman B (2002) Calphad 26(2):273

    Article  CAS  Google Scholar 

  65. Roth RS, Dennis JR, McMurdie HF, Clevinger MA, Ondik HM, Schenk PK (1987) Phase diagrams for ceramists. The American Ceramic Society, Westerville, OH

    Google Scholar 

  66. Schairer JF, Bowen NL (1955) Am J Sci 253:681

    Article  CAS  Google Scholar 

  67. Hillert M, Selleby M, Sundman B (1990) Metall Trans A 21:1990

    Google Scholar 

  68. Fabrichnaya OB, Sundman B (1997) Geochim Cosmochim Acta 61(21):4539

    Article  CAS  Google Scholar 

  69. Decterov SA, Jung IH, Jak E, Kang YB, Hayes P, Pelton AD (2004) VII international conference on molten slags fluxes and salts. The South African Institute of Mining and Metallurgy, p 839

  70. Hallstedt B (1995) J Am Ceram Soc 78(1):193

    Article  CAS  Google Scholar 

  71. Mao H, Fabrichnaya OB, Selleby M, Sundman B (2005) J Mater Res 20(4):975

    Article  CAS  Google Scholar 

  72. Jung IH, Decterov SA, Pelton AD (2004) J Phase Equilib Diffus 25(4):329

    CAS  Google Scholar 

  73. Jung IH, Decterov SA, Pelton AD (2005) J Eur Ceram Soc 25:313

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CTG-Italcementi Group financially supported this study, within the research collaboration framework between the CECM (CNRS, France) and CTG (Italcementi Group, France) laboratories. The authors acknowledge B. Bollotte, E. Moudilou and F. Amin (CTG) for valuable discussions. Many thanks to G. Inden, Bo Sundman, J.-M. Joubert and P. Chartrand for fruitful discussions about Calphad method, models and softwares. The authors also express their sincere thanks to H. Szwarc and R. Céolin for advice and are warmly thankful to F. Dunstetter for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-N. de Noirfontaine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Noirfontaine, MN., Tusseau-Nenez, S., Girod-Labianca, C. et al. CALPHAD formalism for Portland clinker: thermodynamic models and databases. J Mater Sci 47, 1471–1479 (2012). https://doi.org/10.1007/s10853-011-5932-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5932-7

Keywords

Navigation