Skip to main content
Log in

Evolution of the structure and magneto-optical properties of ion beam synthesized iron nanoclusters

  • Materials in New Zealand
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Changes in the structural, magnetic, and optical properties are observed during the synthesis of metallic nanoclusters fabricated on the surface of a thin silica layer by ion beam implantation of iron atoms. Iron atoms were implanted to the fluence of 1016 cm−2. The ion implantation depth in 400-nm thick SiO2 film on a Si (100) substrate was 25 nm. The implanted samples were subsequently annealed for periods of seconds to hours at 1000 °C with Electron Beam Annealing. Ellipsometry and Rutherford Backscattering Spectrometry spectra were fitted with appropriate models to retrieve the optical characteristics, composition, and structure of the samples. Magneto Optical Kerr Effect measurements and SQUID magnetometry were performed to investigate the effect of the structural changes identified by TEM measurements on the superparamagnetic and magneto-optical properties of the samples during the annealing process. The changes in the Fe crystalline(core)/amorphous oxide(shell) structure and the position of the nanoclusters relative to the surface observed for small annealing durations are shown to enhance the Kerr effect resulting into high coercive field and high amplitude in the Kerr rotation and ellipticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cowburn RP (2005) J Magn Magn Mater 242:505

    Article  Google Scholar 

  2. Fonseca FC, Goya GF, Jardim RF, Muccillo R, Carreño NLV, Longo E, Leite ER (2002) Phys Rev B 66:104406

    Article  Google Scholar 

  3. Ripka P (2003) Sens Actuator A 106:8

    Article  Google Scholar 

  4. Lutsev LV, Stognij AI, Novitskii NN, Shulenkov AS (2011) Solid State Phenom 168–169:23

    Google Scholar 

  5. Leveneur J, Kennedy J, Williams GVM, Metson J, Markwitz A (2011) Appl Phys Lett 98:05311

    Article  Google Scholar 

  6. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Science 287:1989

    Article  CAS  Google Scholar 

  7. Betzig E, Trautman JK, Wolfe R, Gyorgy EM, Finn PL, Kryder MH, Chang CH (1992) Appl Phys Lett 61:142

    Article  CAS  Google Scholar 

  8. Hadjipanayis GC (1999) J Magn Magn Mater 200:273

    Article  Google Scholar 

  9. Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J (2003) Nature 423:850

    Article  CAS  Google Scholar 

  10. Barick KC, Varaprasad BSDChS, Bahadur D (2010) J Non-Cryst Solids 356:153

    Article  CAS  Google Scholar 

  11. Santos LRB, Chartier T, Pagnoux C, Baumard JF, Santillii CV, Pulcinelli SH, Larbot A (2004) J Eur Ceram Soc 24:3713

    Article  CAS  Google Scholar 

  12. Kumfer BM, Shinoda K, Jeyadevan B, Kennedy IM (2010) J Aerosol Sci 41:257

    Article  CAS  Google Scholar 

  13. Sun Z, Axelbum RL, Chao BH (2002) Proc Combust Inst 29:1063

    Article  CAS  Google Scholar 

  14. Wang F, Malac M, Egerton RF (2007) J Appl Phys 101:034314

    Article  Google Scholar 

  15. Tripathi JK, Srivastava PC (2008) Appl Surf Sci 255:2767

    Article  CAS  Google Scholar 

  16. Lobotka P, Vavra I, Fendrych F, Kraus L (2002) J Magn Magn Mater 240:491

    Article  CAS  Google Scholar 

  17. Dormann JL, Fiorani D, Giammaria F, Lucari F (1991) J Appl Phys 69:5130

    Article  CAS  Google Scholar 

  18. Babonneau D, Briatico J, Petroff F, Cabioc’h T, Naudon A (2000) J Appl Phys 87:3432

    Article  CAS  Google Scholar 

  19. Dempsey NM, Ranno L, Givord D, Gonzalo J, Serna R, Fei GT, Petford-Long AK, Doole RC, Hole DE (2001) J Appl Phys 90:6268

    Article  CAS  Google Scholar 

  20. Jagannadham K, Howe J, Allard LF (2010) Appl Phys A 98:285

    Article  CAS  Google Scholar 

  21. de la Cruz W, Cota Araiza L (2000) Phys Status Solidi B 220:569

    Article  Google Scholar 

  22. Wegner K, Piseri P, Vahedi Tafreshi H, Milani P (2006) J Phys D Appl Phys 39:R439

    Article  CAS  Google Scholar 

  23. Tan CY, Zhou YZ, Chen JS, Chow SY, Chow GM (2006) Thin Solid Films 510:286

    Article  CAS  Google Scholar 

  24. Markwitz A, Fang F, Kaiser J, Carder DA, Kennedy J, Zülicke U, Johnson PB (2010) J Nanosci Nanotechnol 10:6556

    Article  CAS  Google Scholar 

  25. Johnson S, Markwitz A, Rudolphi M, Baumann H (2004) J Appl Phys 96:605

    Article  CAS  Google Scholar 

  26. Hopf T, Markwitz A (2010) Surf Sci 604:1531

    Article  CAS  Google Scholar 

  27. Tomp R, Rubloff GW, Balk P, LeGoues FK, van Loenen EJ (1985) Phys Rev Lett 55:2332

    Article  Google Scholar 

  28. Lobotka P, Dérer J, Vávra I (2007) Phys Rev B 75:024423

    Article  Google Scholar 

  29. Sakamoto I, Honda S, Tanoue H, Hayashi N, Yamane H (1999) Nucl Instrum Methods B 148:1039

    Article  CAS  Google Scholar 

  30. Amekura H, Kitazawa H, Umeda N, Takeda Y, Kishimoto N (2004) Nucl Instrum Methods B 222:114

    Article  CAS  Google Scholar 

  31. Kennedy J, Leveneur J, Williams GVM, Mitchell DRG, Markwitz A (2011) Nanotechnology 22:115602

    Article  CAS  Google Scholar 

  32. Archer RJ (1962) J Opt Soc Am 52:970

    Article  CAS  Google Scholar 

  33. Vedam K (1998) Thin Solid Films 313–314:1

    Article  Google Scholar 

  34. Irene EA (1993) Thin Solid Films 233:96

    Article  CAS  Google Scholar 

  35. Signamarcheix T, Biasse B, Papon AM, Nolot E, Mazen F, Leveneur J, Faynot O, Clavelier L, Ghyselen B (2010) Appl Phys Lett 96:262111

    Article  Google Scholar 

  36. Milési F, Leveneur J, Mazzocchi V, Mazen F, Gonzatti F, Yckache K (2011) AIP Conf Proc 1321:196

    Article  Google Scholar 

  37. Takeda Y, Gritsyna VT, Umeda N, Lee CG, Kishimoto N (1999) Nucl Instrum Methods B 148:1029

    Article  CAS  Google Scholar 

  38. Takeda Y, Plaksin OA, Kishimoto N (2007) Opt Express 15:6011

    Article  Google Scholar 

  39. Markwitz A, Kennedy J (2009) Int J Nanosci 6:369

    CAS  Google Scholar 

  40. Chakarov IR, Todorov SS, Karpuzov DS (1992) Nucl Instrum Methods B 69:193

    Article  Google Scholar 

  41. Kennedy J, Markwitz A, Trodahl HJ, Ruck BJ, Durbin SM, Gao W (2007) J Electron Mater 36:472

    Article  CAS  Google Scholar 

  42. Doolittle LR (1985) Nucl Instrum Methods B 9:344

    Article  Google Scholar 

  43. Stepanov AL, Khaibullin IB (2005) Rev Adv Mater Sci 9:109

    CAS  Google Scholar 

  44. Grinstaff MW, Salamon MB, Suslick KS (1993) Phys Rev B 48:269

    Article  CAS  Google Scholar 

  45. Lobotka P, Dérer J, Vávra I (2004) Phys Rev B 75:024423

    Article  Google Scholar 

  46. Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz JS, Baró MD (2005) Phys Rep 422:65

    Article  Google Scholar 

  47. Ong QK, Wei A, Lin XM (2009) Phys Rev B 80:134418

    Article  Google Scholar 

  48. Johnston-Peck AC, Wang J, Tracy JB (2009) ACS Nano 3:1077

    Article  CAS  Google Scholar 

  49. Zeng H, Li J, Wang ZL, Liu JP, Sun S (2004) Nano Lett 4:187

    Article  CAS  Google Scholar 

  50. Liu C, Zhang ZJ (2001) Chem Mater 13:2092

    Article  CAS  Google Scholar 

  51. Zhou S, Potzger K, Talut G, Reuther H, von Borany J, Grötzschel R, Skorupa W, Helm M, Fassbender J, Volbers N, Lorenz M, Herrmannsdörfer T (2008) J Appl Phys 103:023902

    Article  Google Scholar 

  52. Yuan CW, Yi DO, Sharp ID, Shin SJ, Liao CY, Guzman J, Ager JW III, Haller EE, Chrzan DC (2009) Phys Rev B 80:134121

    Article  Google Scholar 

  53. Yuan CW, Boswell CN, Shin SJ, Liao CY, Guzman J, Ager JW III, Haller EE, Chrzan DC (2009) Appl Phys Lett 95:083120

    Article  Google Scholar 

  54. D’Orazio F, Lucari F, de Julián C, Mattei G, Lo Russo S, Maurizio C, Mazzoldi P, Sangregorio C, Gatteschi D, Gonella F, Cattaruzza E, Battaglin C, Fiorani D (2002) J Magn Magn Mater 242–245:627

    Article  Google Scholar 

  55. Amekura H, Takeda Y, Kishimoto N (2004) Thin Solid Films 464–465:268

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Foundation for Research Science and Technology of New Zealand (C05X0802) and AINSE (AINGRA08036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, J., Leveneur, J., Takeda, Y. et al. Evolution of the structure and magneto-optical properties of ion beam synthesized iron nanoclusters. J Mater Sci 47, 1127–1134 (2012). https://doi.org/10.1007/s10853-011-5849-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5849-1

Keywords

Navigation