Skip to main content
Log in

Effect of the SiC particle size on the dry sliding wear behavior of SiC and SiC–Gr-reinforced Al6061 composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of size of silicon carbide particles on the dry sliding wear properties of composites with three different sized SiC particles (19, 93, and 146 μm) has been studied. Wear behavior of Al6061/10 vol% SiC and Al6061/10 vol% SiC/5 vol% graphite composites processed by in situ powder metallurgy technique has been investigated using a pin-on-disk wear tester. The debris and wear surfaces of samples were identified using SEM. It was found that the porosity content and hardness of Al/10SiC composites decreased by 5 vol% graphite addition. The increased SiC particle size reduced the porosity, hardness, volume loss, and coefficient of friction of both types of composites. Moreover, the hybrid composites exhibited lower coefficient of friction and wear rates. The wear mechanism changed from mostly adhesive and micro-cutting in the Al/10SiC composite containing fine SiC particles to the prominently abrasive and delamination wear by increasing of SiC particle size. While the main wear mechanism for the unreinforced alloy was adhesive wear, all the hybrid composites were worn mainly by abrasion and delamination mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Natarajan N, Vijayarangan S, Rajendran I (2006) Wear 261:812

    Article  CAS  Google Scholar 

  2. Gurcan AB, Baker TN (1995) Wear 188:185

    Article  CAS  Google Scholar 

  3. Li GR, Zhao YT, Dai QX, Cheng XN, Wang HM, Chen G (2007) J Mater Sci 42:5442. doi:https://doi.org/10.1007/s10853-006-0790-4

    Article  CAS  Google Scholar 

  4. Rao RN, Das S (2010) Mater Des 31:1200

    Article  CAS  Google Scholar 

  5. Hassan AM, Alrashdan A, Hayajneh MT, Mayyas AT (2009) Tribol Int 42:1230

    Article  CAS  Google Scholar 

  6. Al-Rubaie KS, Goldenstein H, Biasoli de Mello JD (1999) Wear 225–229:163

    Article  Google Scholar 

  7. Basavarajappa S, Chandramohan G, Mukund K, Ashwin M, Prabu M (2006) J Mater Eng Perform 15:668

    Article  CAS  Google Scholar 

  8. Basavarajappa S, Chandramohan G, Mahadevan A, Thangavelu M, Subramanian R, Gopalakrishnan P (2007) Wear 262:1007

    Article  CAS  Google Scholar 

  9. Mindivan H, Kayali ES, Cimenoglu H (2008) Wear 265:645

    Article  CAS  Google Scholar 

  10. Canakci A (2011) J Mater Sci 46:2805. doi:https://doi.org/10.1007/s10853-010-5156-2

    Article  CAS  Google Scholar 

  11. Kumar S, Balasubramanian V (2008) Wear 264:1026

    Article  CAS  Google Scholar 

  12. Leng J, Jiang L, Wu G, Tian S, Chen G (2009) Rare Met Mater Eng 38:1894

    Article  CAS  Google Scholar 

  13. Leng J, Jiang L, Zhang Q, Wu G, Sun D, Zhou Q (2008) J Mater Sci 43:6495. doi:https://doi.org/10.1007/s10853-008-2974-6

    Article  CAS  Google Scholar 

  14. Ted Guo ML, Tsao CYA (2000) Compos Sci Technol 60:65

    Article  Google Scholar 

  15. Ramesh CS, Safiulla M (2007) Wear 263:629

    Article  CAS  Google Scholar 

  16. Mahdavi S, Akhlaghi F (2011) J Mater Sci 46:1502. doi:https://doi.org/10.1007/s10853-010-4954-x

    Article  CAS  Google Scholar 

  17. Kiourtsidis GE, Skolianos SM (2002) Wear 253:946

    Article  CAS  Google Scholar 

  18. Gui M, Kang SB (2001) Metall Mater Trans A 32A:2383

    Article  CAS  Google Scholar 

  19. Zhan Y, Zhang G (2003) J Mater Sci Lett 22:1087

    Article  CAS  Google Scholar 

  20. Urena A, Rams J, Campo M, Sanchez M (2009) Wear 266:1128

    Article  CAS  Google Scholar 

  21. Akhlaghi F, Zare Bidaki A (2009) Wear 266:37

    Article  CAS  Google Scholar 

  22. Akhlaghi F, Pelaseyyed SA (2004) Mater Sci Eng A 385:258

    Article  Google Scholar 

  23. Jun D, Yao-hui L, Si-rong Y, Wen-fang L (2004) Wear 257:930

    Article  Google Scholar 

  24. Akhlaghi F, Esfandiari H (2007) Mater Sci Eng A 452–453:70

    Article  Google Scholar 

  25. Akhlaghi F, Delshad Khatibi P (2011) Powder Metall 54(2):153

    Article  CAS  Google Scholar 

  26. Leon CA, Rodriguez-Ortiz G, Aguilar-Reyes EA (2009) Mater Sci Eng A 526:106

    Article  Google Scholar 

  27. Hafizpour HR, Simchi A, Parvizi S (2010) Adv Powder Technol 21:273

    Article  CAS  Google Scholar 

  28. Sivakumar K, Balakrishna-Bhat T, Ramakrishnan P (1998) J Mater Process Technol 73:268

    Article  Google Scholar 

  29. Archard JF (1953) J Appl Phys 24:981

    Article  Google Scholar 

  30. Mondal AK, Kumar S (2009) Wear 267:458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdavi, S., Akhlaghi, F. Effect of the SiC particle size on the dry sliding wear behavior of SiC and SiC–Gr-reinforced Al6061 composites. J Mater Sci 46, 7883–7894 (2011). https://doi.org/10.1007/s10853-011-5776-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5776-1

Keywords

Navigation