Skip to main content
Log in

Grain boundary engineering: historical perspective and future prospects

  • IIB 2010
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A brief introduction of the historical background of grain boundary engineering for structural and functional polycrystalline materials is presented herewith. It has been emphasized that the accumulation of fundamental knowledge about the structure and properties of grain boundaries and interfaces has been extensively done by many researchers during the past one century. A new approach in terms of the concept of grain boundary and interface engineering is discussed for the design and development of high performance materials with desirable bulk properties. Recent advancements based on these concepts clearly demonstrate the high potential and general applicability of grain boundary engineering for various kinds of structural and functional materials. Future prospects of the grain boundary and interface engineering have been outlined, hoping that a new dimension will emerge pertaining to the discovery of new materials and the generation of a new property originating from the presence of grain boundaries and interfaces in advanced polycrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The 85% rolled sheet specimens were prepared by ordinary or magnetic annealing at 973 K (T/T c = 0.95, T c: the Curie temperature) for 6 h. The average grain size of annealed specimens was almost similar for the three alloys, namely the density of grain boundaries was kept at almost similar level, although there was some difference less than twice for Fe–0.02at%Sn alloy. The frequency of random boundaries which can be preferential sites for segregation was almost 80% for the three alloys. The fracture toughness was measured by the three-point bending test. The details of the experimental procedure are presented in the original paper [139].

References

  1. Hondros ED (1996) In: Proceedings of the Donald McLean symposium on structural materials: engineering application through scientific insight, Institute of Materials Cambridge University Press, p 1, reproduced optical micrograph from Sorby HC (1887) J Iron Steel Inst 1:255

  2. Tien JK, Ansell GS (eds) (1976) Alloy and microstructural design. Academic Press, New York

    Google Scholar 

  3. Das SK, Keer BH, Adam CM (eds) (1985) Rapidly solidified crystalline alloys. AIME, Warrendale

    Google Scholar 

  4. Ray RK, Murthy VSR, Batra NK, Padmanabhan KA, Ranganathan S (eds) (2001) Materials for the third millennium. Oxford & IBH Pub Co Ptv Ltd, New Delhi

    Google Scholar 

  5. Martin JW, Doherty JD, Cantor B (1997) Stability of microstructure in metallic systems, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. McLean M (1982) Met Sci 16:31

    Article  Google Scholar 

  7. Watanabe T, Tsurekawa S, Zhao X, Zuo L, Esling C (2006) J Mater Sci 41:7747. doi:10.1007/s10853-006-0740-1

    Article  CAS  Google Scholar 

  8. Conrad H, Jung K (2004) Mater Manuf Process 19:573

    Article  CAS  Google Scholar 

  9. Swalin RW (1972) JOM 24:35

    CAS  Google Scholar 

  10. Mehl RF (1983) The historical development of physical metallurgy. In: Cahn RW, Haasen P (eds) Physical metallurgy, 3rd edn, chap 1. North Holland Publishing Co., Amsterdam

  11. Cahn RW (2001) The coming of materials science, chap 6. Pergamon Press, Amsterdam

  12. Smith CS (1948) Trans AIME 175:15

    Google Scholar 

  13. Aust KT, Chalmers B (1952) Energies and structure of grain boundaries. Metal interfaces. ASM, Cleveland, OH, p 153

    Google Scholar 

  14. Read WT Jr (1953) Dislocation in crystals. McGraw-Hill, New York, p 155

    Google Scholar 

  15. Read WT, Shockley W (1954) In: Cohen M (ed) Dislocations in metals. AIME, New York, p 37

    Google Scholar 

  16. Amelinckx S (1957) In: Fisher JC, Johnston WG, Thomson R, Vreeland T (eds) Dislocations and mechanical properties of crystals. GE Company, Schenectady, NY, p 3

    Google Scholar 

  17. Hirsch PB, Horne RW, Whelan MJ (1957) In: Fisher JC, Johnston WG, Thomson R, Vreeland T (eds) Dislocation and mechanical properties of crystals. GE Company, Schenectady, NY, p 92

    Google Scholar 

  18. McLean D (1957) Grain boundaries in metals. Oxford University Press, London

    Google Scholar 

  19. Sutton A, Balluffi RW (1995) Interfaces in crystalline materials. Oxford University Press, Oxford

    Google Scholar 

  20. Adams BL, Wright SI, Kunze K (1993) Met Trans A24:819

    Google Scholar 

  21. Schwartz AJ, Kumar M, Adams BL (eds) (2000) Electron back scatter diffraction in materials science. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  22. Kobayashi S, Kamata A, Watanabe T (2009) Scripta Mater 61:1032

    Article  CAS  Google Scholar 

  23. Birringer R, Herr U, Gleiter H (1986) In: Proceedings of the 4th JIM internal conference on grain boundary structure and related phenomena, Trans JIM 27:43

  24. Watanabe T (1984) Res Mech 11:47

    CAS  Google Scholar 

  25. Aust KT, Palumbo G (1989) In: Wilkinson DS (ed) Proceedings of internal symposium on advanced structural materials. Pergamon Press, p 215

  26. Raman V, Watanabe T, Langdon TG (1989) Acta Mater 37:705

    Article  CAS  Google Scholar 

  27. Chalmers B (1952) Prog Met Phys 3:293

    Article  CAS  Google Scholar 

  28. Weinberg F (1959) Prog Met Phys 8:105

    Article  CAS  Google Scholar 

  29. Goux C (1961) Mem Sci Rev Metall 58:769

    Google Scholar 

  30. Gleiter H, Chalmers B (1972) Prog Mater Sci 16:1

    Article  Google Scholar 

  31. Pande CS, Chou YT (1975) In: Herman H (ed) Treatise on materials science and technology. Academic Press, London, p 43

    Google Scholar 

  32. Chou YT, Cai BC, Romig AD, Lin LS (1983) Philos Mag A47:363

    Google Scholar 

  33. Tsurekawa S, Tanaka T, Yoshinaga H (1994) Mater Sci Eng A176:341

    Google Scholar 

  34. Yoshinaga H (1990) Mater Trans JIM 31:233

    CAS  Google Scholar 

  35. Sakuma T, Ikuhara Y, Yamamoto T, Yoshida H (2002) Ann Chim Sci Mat 27:S345

    Google Scholar 

  36. Su JQ, Denuma M, Hirano T (2002) Philos Mag A82:1541

    Google Scholar 

  37. Biscondi M, Goux C (eds) (1975) J Phys 36:C4-345

  38. Rühle M, Balluffi RW, Fishmeister H, Sass SL (eds) (1985) The structure and properties of internal interfaces. Les Edition de Physique, France

  39. Ishida Y (ed) (1986) In: Proceedings of the JIMIS-4 on grain boundary structure and related phenomena, Trans JIM suppl 27

  40. Wolf D, Yip S (eds) (1993) Materials interfaces. Chapman & Hall, London

    Google Scholar 

  41. Balluffi RW (ed) (1980) Grain boundary structure and kinetics. ASM, Metals Park, OH

    Google Scholar 

  42. Gottstein G, Shvindlerman LS (1999) Grain boundary migration in metals. CRC Press, Boca Raton, FL

    Google Scholar 

  43. Shibata N, Oba F, Yamamoto T, Ikuhara Y (2004) Philos Mag 84:2381

    Article  CAS  Google Scholar 

  44. Balluffi RW (1979) In: Johnson WC, Blakely JM (eds) Interfacial segregation. ASM, Metals Park, OH, p 193

    Google Scholar 

  45. Watanabe T, Fujii H, Oikawa H, Arai KI (1989) Acta Met 37:941

    Article  CAS  Google Scholar 

  46. Smith DA (1974) Scripta Met 8:1197

    Article  CAS  Google Scholar 

  47. Watanabe T, Arai KI, Yoshimi K, Oikawa H (1989) Philos Mag Lett 59:47

    Article  CAS  Google Scholar 

  48. Watanabe T, Tsurekawa S, Zhang Y, Zhao X, Zuo L (2009) In: Proceedings of the ICOTOM-15 Am Cer Soc, Interscience, chap 48, p 421

  49. Yamaura S, Igarashi Y, Tsurekawa S, Watanabe T (1999) Acta Mater 47:1163

    Article  CAS  Google Scholar 

  50. Takasugi T, Izumi O (1983) Acta Met 31:1187

    Article  CAS  Google Scholar 

  51. Gleiter H (1970) Acta Met 18:23

    Article  CAS  Google Scholar 

  52. Otsuki A, Mizuno M (1986) In: Proceedings of the JIMIS-4 on grain boundary structure and related phenomena, Trans JIM 27(suppl):789

  53. Otsuki A (1996) Mater Sci Forum 207–209:413

    Article  Google Scholar 

  54. Kirch DM, Jannot E, Barrales-Mora LA, Molodov DA, Gottstein G (2008) Acta Mater 56:4998

    Article  CAS  Google Scholar 

  55. Froment M (1975) Intern Colloq Grain Bound Met 36:C4371

    Google Scholar 

  56. Saylor DM, El-Dasher BS, Adams BL, Rohrer GS (2004) Met Mater Trans 35A:1981

    Article  CAS  Google Scholar 

  57. Rohrer G, Saylor DM, Dasher BEl, Adams BL, Rollet AD, Wynblatt P (2004) Z Metallkde 95:197

    CAS  Google Scholar 

  58. Watanabe T, Yamada M, Karashima S (1991) Philos Mag A63:1013

    Google Scholar 

  59. Yoshida H, Yamamoto T, Ikuhara Y, Sakuma T (2002) Philos Mag A82:511

    Google Scholar 

  60. Tsurekawa S, Watanabe T, Watanabe H, Tamari N (2003) Key Eng Mater 247:327

    Article  CAS  Google Scholar 

  61. Watanabe T (1993) In: Karl T Aust, Erb U, Palumb G (eds) Intern Symp CIMMP, p 57

  62. Watanabe T, Tsurekawa S (1999) Acta Mater 47:4171

    Article  CAS  Google Scholar 

  63. Watanabe T, Tsurekawa S, Zhao X, Zuo L (2009) In: Haldar A, Suwas S, Bhattachrjee D (eds) Proceedings of internal conference on microstructure and texture in steels, chap 4. Springer, p 43

  64. Hall EO (1951) Proc Phys Soc B64:747

    CAS  Google Scholar 

  65. Petch NJ (1953) J Iron Steel Inst 174:25

    CAS  Google Scholar 

  66. Baker TN (ed) (1983) Yield, flow and fracture of polycrystals. Applied Sci Publishers, Barking, England

    Google Scholar 

  67. Otooni MA, Armstrong RW, Grant NJ, Ishizaki K (eds) (1995) In: Grain size and mechanical properties—fundamentals and applications, MRS Symp Proc, p 362

  68. Watanabe T (1998) In: Pond RC, Clark WAT, King AH, Williams DB (eds) Proceedings of David A Smith memorial symposium on boundaries & interfaces in materials, TMS, p 19

  69. Grabski MW (1985) J de Phys Colloq 46:C4-567

    Google Scholar 

  70. Wyrzykowski JW, Grabski MW (1986) Philos Mag A53:505

    Google Scholar 

  71. Watanabe T (1985) In: Proceedings of internal conference on the structure and properties of internal interfaces, J de Phys 46:C4-555

  72. Watanabe T (1986) In: Proceedings of 4th JIM internal symposium on grain boundary structure and related properties, Trans JIM 27(suppl):73

  73. Lim LC, Watanabe T (1989) Scripta Met 23:489

    Article  Google Scholar 

  74. Lim LC, Watanabe T (1990) Acta Met Mater 38:2507

    Article  CAS  Google Scholar 

  75. Nichols CS, Clarke DR (1991) Acta Met Mater 39:995

    Article  CAS  Google Scholar 

  76. Watanabe T (1993) Mater Sci Eng A166:11

    CAS  Google Scholar 

  77. Palumbo G, Lehockey EM, Lin P (1998) JOM 50(2):40

    Article  CAS  Google Scholar 

  78. Palumbo G, Erb U (1999) MRS Bull 24(11):27

    CAS  Google Scholar 

  79. Randle V (2004) Acta Mater 52:4067

    Article  CAS  Google Scholar 

  80. Tsurekawa S, Nakamichi S, Watanabe T (2006) Acta Mater 54:3617

    Article  CAS  Google Scholar 

  81. Michiuchi M, Kokawa H, Wang ZJ, Sato YS, Sakai K (2006) Acta Mater 54:5179

    Article  CAS  Google Scholar 

  82. Kobayashi S, Tsurekawa S, Watanabe T, Kobylanski A (2008) Philos Mag 88:489

    Article  CAS  Google Scholar 

  83. Palumbo G, King PJ, Aust KT, Erb U, Lichtenberger PC (1991) Scripta Met 25:1775

    Article  CAS  Google Scholar 

  84. Wang G, Zuo L, Esling C (2002) Philos Mag A82:2499

    Google Scholar 

  85. Schuh CA, Minich W, Kumar M (2003) Philos Mag 83:711

    Article  CAS  Google Scholar 

  86. Watanabe T, Tsurekawa S (eds) (2005) J Mater Sci 40(Special Issue):817. doi:10.1007/s10853-005-6497-0

  87. Kumar M, Schh CA (eds) (2006) Scripta Mater 54:961. (Viewpoint Set No. 40)

  88. Craford DC, Was GS (1992) Met Trans A 23:1195

    Article  Google Scholar 

  89. Lin P, Palumbo G, Erb U, Aust KT (1995) Scripta Met Mater 33:1387

    Article  CAS  Google Scholar 

  90. Tsurekawa S, Watanabe T (2000) MRS Symp Proc 586:237

    CAS  Google Scholar 

  91. Hirano T (1990) Acta Met Mater 38:2667

    Article  CAS  Google Scholar 

  92. Watanabe T, Hirano T, Ochiai T, Oikawa H (1994) Mater Sci Forum 157–162:1103

    Article  Google Scholar 

  93. Tsurekawa S, Naito Y, Murthy VSR, Watanabe T, Tamari N (2003) Key Eng Mater 247:331

    Article  CAS  Google Scholar 

  94. Hirano T, Demura M, Kishida K, Suga Y (2002) Materialia JIM 41:283

    CAS  Google Scholar 

  95. Liu CT (1988) MRS Proc 122:429

    CAS  Google Scholar 

  96. Chung TH, Pan YC, Hsu SE (1991) Met Trans A22:1801

    Google Scholar 

  97. George EP, Liu CT, Pope DP (1992) Scripta Met 27:365

    Article  CAS  Google Scholar 

  98. Shimada M, Kokawa H, Wang ZJ, Sato YS, Karibe I (2002) Acta Mater 50:2331

    Article  CAS  Google Scholar 

  99. Kokawa H, Shimada M, Michiuchi M, Wang ZJ, Sato YS (2007) Acta Mater 55:5401

    Article  CAS  Google Scholar 

  100. Jin WZ, Kokawa H, Wang ZJ, Sato YS, Hara N (2010) ISIJ Int 50:476

    Article  CAS  Google Scholar 

  101. Gupta G, Amporrnrat, Ren X, Sridharan K, Was GS (2009) J Nucl Mater 361:160

    Article  CAS  Google Scholar 

  102. Kobayashi S, Yoshimura T, Tsurekawa S, Watanabe T (2003) Mater Trans 44:1469

    Article  Google Scholar 

  103. Randle V, Coleman M (2009) Acta Mater 57:3410

    Article  CAS  Google Scholar 

  104. Lehockey EM, Palumbo G (1997) Mater Sci Eng A237:168

    CAS  Google Scholar 

  105. Alexandreanu B, Sencer BH, Thaveeprungsriporn V, Was GS (2003) Acta Mater 51:3831

    Article  CAS  Google Scholar 

  106. Alexandreanu B, Was GS (2006) Scripta Mater 54:1047

    Article  CAS  Google Scholar 

  107. Gao Y, Stölken JS, Kumar M, Ritchie RO (2007) Acta Mater 55:3155

    Article  CAS  Google Scholar 

  108. Kobayashi S, Inomata T, Kobayashi H, Tsurekawa S, Watanabe T (2008) J Mater Sci 43:3792. doi:10.1007/s10853-007-2236-z

    Article  CAS  Google Scholar 

  109. Yamaura S, Igarashi Y, Tsurekawa S, Watanabe T (2000) In: Meike A, Gonis A, Patrice E, Turch A, Rajan K (eds) Properties of complex inorganic solids, vol 2. Kluwer Academic/Plenum Publishers, New York, p 27

    Google Scholar 

  110. Kobayashi S, Tsurekawa S, Watanabe T, Palumbo G (2010) Scripta Mater 62:294

    Article  CAS  Google Scholar 

  111. Bechtle S, Kumar M, Somerday BP, Launey ME, Richie RO (2009) Acta Mater 57:4148

    Article  CAS  Google Scholar 

  112. Erb U, Palumbo G (eds) (1993) In: Proceedings of the K T Aust symposium on grain boundary engineering. Canadian Institute of Mining Metallurgy and Petroleum (CIMMP)

  113. Watanabe T, Tsurekawa S, Petit J, Dimitrov O, Igata N (eds) (2002) In: Proceedings of the 7th Japan–France materials seminar of interfaces and related phenomena—the control of interfaces, surface and environmental effects on material function and performance. Ann Chim Sci Mat 27(suppl 1), Editions Elsevier

  114. Watanabe T, Takazawa M, Oikawa H (1988) The grain boundary character distribution and intergranular corrosion of columnar grain structure in iron–chromium alloys. Strength of metals and alloys (ICSMA-8). Pergamon Press, New York, USA, p 1357

    Google Scholar 

  115. Watanabe T (1996) In: Hondros ED, Mclean M (eds) Proceedings of the Donald McLean symposium on structural materials. The Institute of Materials, p 43

  116. Watanabe T, Kido K, Tsurekawa S, Kawahara K (2007) Mater Sci Forum 558:843

    Article  Google Scholar 

  117. Tsurekawa ST, Kido K, Hamada S, Watanabe T, Sekiguchi T (2005) Z Metallkde 96:197

    CAS  Google Scholar 

  118. Tsurekawa S, Kido K, Watanabe T (2005) Philos Mag Lett 85:41

    Article  CAS  Google Scholar 

  119. Mender H, Jones RL (1913) Phys Rev 1(No. 4):259

    Article  Google Scholar 

  120. Smolkowski R, Turner RW (1949) J Appl Phys 20:745

    Article  Google Scholar 

  121. Cahn JW (1963) J Appl Phys 34:3581

    Article  Google Scholar 

  122. Satyannarayan KR, Eliasz W, Miodonic AP (1968) Acta Met 16:877

    Article  Google Scholar 

  123. Kakeshita T, Shirai H, Shimizu K, Sugiyama K, Hazumi K, Date M (1987) Trans JIM 28:891

    CAS  Google Scholar 

  124. Martikainen HO, Lindroos VK (1981) Scand J Metall 10:3

    CAS  Google Scholar 

  125. Watanabe T, Suzuki Y, Tanii S, Oikawa H (1990) Philos Mag Lett 62:9

    Article  CAS  Google Scholar 

  126. Masahashi M, Matsuo M, Watanabe K (1998) J Mater Res 13:457

    Article  CAS  Google Scholar 

  127. Sheikh-Ali AD, Molodov DA, Garmestani H (2002) Scripta Mater 46:857

    Article  CAS  Google Scholar 

  128. Molodov DA, Bozzolo N (2010) Acta Mater 58:3568

    Article  CAS  Google Scholar 

  129. Sauthoff G, Pitsch W (1987) Philos Mag B56:471

    Google Scholar 

  130. Li X, Ren Z, Fautrelle Y, Gagnoud A, Zhang Y, Esling C (2009) Scripta Mater 60:489

    Article  CAS  Google Scholar 

  131. Li X, Ren Z, Fautrelle Y, Gagnoud A, Zhang Y, Esling C (2010) Acta Mater 58:1403

    Article  CAS  Google Scholar 

  132. Tsurekawa S, Harada K, Sasaki T, Matsuzaki T, Watanabe T (2000) Mater Trans 41:991

    CAS  Google Scholar 

  133. Kakeshita T, Saburi T, Shimizu K (1999) Mater Sci Eng A273–275:21

    Google Scholar 

  134. Choi JK, Ohtsuka H, Xu Y, Choo WY (2000) Scripta Mater 43:221

    Article  CAS  Google Scholar 

  135. Enomoto M, Guo H, Tazuke Y, Abe YR, Shimotomai M (2001) Met Mater Trans A32:445

    Article  Google Scholar 

  136. Hao XJ, Otsuka H, Rango PD, Wada H (2003) Mater Trans 44:211

    Article  CAS  Google Scholar 

  137. Zhang Y, Hu C, Zhao X, Zuo L, Esling C, He J (2004) J Magn Magn Mater 284:287

    Article  CAS  Google Scholar 

  138. Joo HD, Cho JK, Kim SU, Shin NS, Koo YM (2004) Met Mater Trans 35A:1663

    Article  CAS  Google Scholar 

  139. Tsurekawa S, Okamaoto K, Kawahara K, Watanabe T (2005) J Mater Sci 40(Special Issue):895. doi:10.1007/s10853-005-6507-2

    Article  CAS  Google Scholar 

  140. Watanabe T, Nishizawa S, Tsurekawa S (2005) In: Turch PEA, Gonis A, Rajan K, Meike A (eds) Complex inorganic solids, structural stability and magnetic properties of alloys. Springer, New York, p 327

    Google Scholar 

  141. Hondros ED (1980) Phil Trans R Soc Lond A295:9

    Article  Google Scholar 

  142. Watanabe T (2001) In: Gottstein G, Molodov DA (eds) Proceedings of the first joint internal symposium on recrystallization and grain growth. Springer, p 11

  143. Molodov DA (2004) Mater Sci Forum 467:697

    Article  Google Scholar 

  144. Watanabe T, Tsurekawa S, Zhao X, Zuo L (2006) Scripta Mater 54:969 View point set No. 40 on GBE

    Article  CAS  Google Scholar 

  145. Conrad H, Yang D (2007) Acta Mater 55:6789

    Article  CAS  Google Scholar 

  146. Choi JH, Han JH, Kim DY (2003) J Am Ceram Soc 86(2):347

    Article  CAS  Google Scholar 

  147. Gottstein G, Shvindlerman LS (2006) Scripta Mater 54:1065

    Article  CAS  Google Scholar 

  148. Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Acta Mater 55:6208

    Article  CAS  Google Scholar 

  149. Dillon SJ, Harmer MP, Luo J (2009) JOM 61(No. 12):38

    Article  Google Scholar 

  150. Palumbo G, Aust KT (1988) Scripta Met 22:847

    Article  CAS  Google Scholar 

  151. Watanabe T, Obara K, Tsurekawa S, Gottstein G (2005) Z Metallkde 96(No. 10):1196

    CAS  Google Scholar 

  152. Kobayashi S, Tsurekawa S, Watanabe T (2005) Acta Mater 53:1051

    Article  CAS  Google Scholar 

  153. Kobayashi S, Tsurekawa S, Watanabe T (2006) Philos Mag 86:5419

    Article  CAS  Google Scholar 

  154. Demianczuk DW, Aust KT (1975) Acta Met 23:1149

    Article  CAS  Google Scholar 

  155. Aust KT (1981) Prog Mater Sci, Chalmers Anniversary volume:27

  156. Watanabe T, Kimura S, Karashima S (1984) Philos Mag A49:845

    Google Scholar 

  157. Watanabe T (2005) Mater Sci Eng A410:140

    Google Scholar 

  158. d’Heurle FM (1989) Intern Mater Rev 34(No. 2):53

    Google Scholar 

  159. Thompson CV, Lloyd JR (1993) MRS Bull 18:19

    CAS  Google Scholar 

  160. Yalisove SM, Adams BL, Im JS, Zhu Y, Chen FR (eds) (1997) In: Proceedings of MRS symposium on polycrystalline thin films-structure, texture, properties and application III 472

  161. Gleiter H (2003) Mater Trans 44:1057

    Article  CAS  Google Scholar 

  162. Gleiter H (2008) Acta Mater 56:5875

    Article  CAS  Google Scholar 

  163. Gleiter H (2009) MRS Bull 34(No. 6):456

    Article  Google Scholar 

  164. Kronik L, Koch N (eds) (2010) MRS Bulletin 35(No. 6):417

  165. Ikuhara Y (2009) Prog Mater Sci 54:770

    Article  CAS  Google Scholar 

  166. Craford DC, Was GS (1992) Met Trans A23:1195

    Google Scholar 

  167. Aus MJ, Szpunar B, Erb U, Palumbo G, Aust KT (1994) MRS Symp 318:39

    CAS  Google Scholar 

  168. Lehockey EM, Palumbo G, Lin P, Brennenstuhl AM (1997) Scripta Mater 36:1211

    Article  CAS  Google Scholar 

  169. Lartigue S, Carry C, Priester L (1990) Mater Sci Eng A237:168

    Google Scholar 

  170. French JD, Zhao J, Harmer M, Chan HM, Miller GA (1994) J Am Ceram Soc 77:2857

    Article  CAS  Google Scholar 

  171. Yoshida H, Okada K, Ikuhara Y, Sakuma T (1997) Philos Mag Lett 76:9

    Article  CAS  Google Scholar 

  172. Lehockey EM, Palumbo G, Lin P, Brennenstuhl A (1998) Met Mater Trans 29A:387

    Article  CAS  Google Scholar 

  173. Furuya Y, Hagood NW, Kimura H, Watanabe T (1998) Mater Trans JIM 39:1248

    CAS  Google Scholar 

  174. Alexexandreanu B, Capell B, Was GS (2001) Mater Sci Eng A300:94

    Google Scholar 

  175. Randle V, Davies H (2002) Met Mater Trans 33A:1853

    Article  CAS  Google Scholar 

  176. Yamaura S, Tsurekawa S, Watanabe T (2003) Mater Trans 44:1494

    Article  CAS  Google Scholar 

  177. Furukawa M, Horita Z, Langdon TG (2005) J Mater Sci 40(Spec. Issue):909. doi:10.1007/s10853-005-6507-2

    Article  CAS  Google Scholar 

  178. Furuhara T, Maki T (2005) J Mater Sci 40(Spec. Issue):919. doi:10.1007/s10853-005-6511-6

    Article  CAS  Google Scholar 

  179. Kokawa H (2005) J Mater Sci 40(Spec. Issue):927. doi:10.1007/s10853-007-2236-z

    Article  CAS  Google Scholar 

  180. Watanabe T, Nishizawa S, Tsurekawa S (2005) Complex inorganic solids. Springer, Berlin, p 327

    Book  Google Scholar 

  181. Gao Y, Kumar M, Ritchie RO (2005) Met Mater Trans 36A:3325

    Article  CAS  Google Scholar 

  182. Fujii H, Tsurekawa S, Matsuzaki T, Watanabe T (2006) Phil Mag Lett 86:113

    Article  CAS  Google Scholar 

  183. Yang S, Wang Z-J, Kokawa H, Sato Y (2009) Mater Sci Eng A474:112

    Google Scholar 

  184. Terashima S, Kohno T, Mizusawa A et al (2009) J Electron Mater 38:33

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to express my sincere thank to my mentors, Dr. Donald McLean and Prof. Karl T. Aust for constantly encouraging and guiding me to a new front in the research field of grain boundaries where I have been always enjoying a new encounter and a new challenge with unlimited interest. I express my sincere thanks to my ex-students and co-workers, particularly Prof. H. Kokawa and Prof. S. Tsurekawa who have shared the vision and new challenges of grain boundary engineering with me for many years. Collaboration with Prof. L. Zuo, Prof. X. Zhao, and Prof. C. Esling also helped greatly in the development of GBE by magnetic field application. My special gratitude goes to Prof. Yeng Cheng Huang (En-Sei Ko), my brother in-law, for his warmest encouragements for many years. Finally I would like to express my sincere thanks to Professor Satyam Suwas of Indian Institute of Science who kindly read and corrected the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadao Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, T. Grain boundary engineering: historical perspective and future prospects. J Mater Sci 46, 4095–4115 (2011). https://doi.org/10.1007/s10853-011-5393-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5393-z

Keywords

Navigation