Skip to main content
Log in

Process optimization and alignment of PVA/FeCl3 nano composite fibres by electrospinning

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper describes the result of investigation on PVA/FeCl3 nano composites fibres prepared by the electrospinning process. The effects of instrument parameters including solution concentration, electric voltage, tip–target distance, flow rate parameters on the morphology of electrospun PVA/FeCl3 fibres were evaluated. The produced composite fibres were characterized by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Fibre mats of (PVA)/FeCl3 composite thin fibres, in the diameter of 500–1100 nm, were prepared by electrospinning. These microscopies show detailed morphologies of PVA/FeCl3 nano composites incorporating magnetic power. These novel composite fibres could be used in biomedical, catalyst and magnetic purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Reneker DH, Chun I (1996) Nanotechnology 7:216

    Article  CAS  Google Scholar 

  2. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:223

    Google Scholar 

  3. Formhals A (1934) US Patent No. 1975504

  4. Chase GG, Ramsier RD, Alessandro M, Katta P (2003) Nano Lett 4(11):2215

    Google Scholar 

  5. Doshi J, Reneker DH (1995) J Electrost 35:151

    Article  CAS  Google Scholar 

  6. Bershoef MM, Vancso GJ (1999) Adv Mater 11:1362

    Article  Google Scholar 

  7. Edwards WM (1965) US Patent No. 3415782

  8. Irwin RS (1968) US Patent No. 3415782

  9. Yarin AL, Zussman E, Theorn SA (2004) Eur Polym J 45:2017

    Google Scholar 

  10. Mark HF, Gayload NG (1980) Encyclopedia of polymer science and technology, vol 14. Wiley, New York

    Google Scholar 

  11. Krumova M, Lopez D, Benavente R, Mijangos C, Perena JM (2000) Polymer 41:9265

    Article  CAS  Google Scholar 

  12. Shivkumar S, Yim K, Koski A (2004) Mater Lett 58:493

    Article  Google Scholar 

  13. Yao L, Haas TW, Elie AG, Bowlin GL, Simpson DG, Wnek DG (2003) Chem Mater 15:1860

    Article  CAS  Google Scholar 

  14. Koski A, Yim K, Shivkumar S (2004) Mater Lett 58:4939

    Article  Google Scholar 

  15. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) Polymer 42:261

    Article  CAS  Google Scholar 

  16. Shao CL, Kim HY, Gong J, Ding B, Lee DR, Park SJ et al (2003) Mater Lett 57:1579

    Article  CAS  Google Scholar 

  17. Gong J, Li XD, Ding B, Lee DR, Kim HY (2003) J Appl Polym Sci 89:1573

    Article  CAS  Google Scholar 

  18. Chuangchote S, Supaphol P (2006) J Nanosci Nanotechnol 6:125

    CAS  Google Scholar 

  19. Karim M, Yeum JH (2010) Soft Mater 8(3):197

    Article  CAS  Google Scholar 

  20. Sona WK, Youkb JH, Lee TS (2005) Matter Lett 59:1571

    Article  Google Scholar 

  21. Jayaraman K, Kataki M, Zhang Y, Mo X, Ramakrishna S (2004) J Nanosci Nanotechnol 4:52

    CAS  Google Scholar 

  22. Bornat A (1987) US Patent 4689186

  23. Berry JP (1990) US Patent 4965110

  24. Theron A, Zussman E, Yarin AL (2001) Nanotechnology 12:384

    Article  Google Scholar 

  25. Deitzel JM, Kleinmeyer JD, Hirvonen JK, Tan NC (2001) B-Polymer 42:8163

    Article  CAS  Google Scholar 

  26. Kameoka J, Czaplewski D, Liu H, Craighead HG (2004) J Mater Chem 14:1503

    Article  CAS  Google Scholar 

  27. Bognitzki M, Czado W, Frees T, Schsper A, Hellwig M, Steinhart M (2001) Adv Mater 13(1):70

    Article  CAS  Google Scholar 

  28. Zong XH, Kim KS, Fang DF, Ran SF, Hsiao BS, Chu BJ (2002) Polymer 43(16):4403

    Article  CAS  Google Scholar 

  29. SY GU, Ren J, Vancso GJ (2005) Eur Polym J 41:2559

    Article  Google Scholar 

  30. Tan SH, Inai R, Kotaki M, Ramakrishna S (2005) Polymer 46:6128

    Article  CAS  Google Scholar 

  31. Fridrikh SV, Yu JH, Brenner MP, Rutledge GC (2003) Phys Rev Lett 90:144502

    Article  Google Scholar 

  32. Wan T, Chowdhury M, Stylios G (2010) Mater Sci Forum 650:361

    Article  CAS  Google Scholar 

  33. Jalili R, Hosseini SA, Morshed M (2005) Iran Polym J 14:1074

    CAS  Google Scholar 

  34. Jalili R, Morshed M, Ravandi SAH (2006) J Appl Polym Sci 101:4350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, M., Stylios, G. Process optimization and alignment of PVA/FeCl3 nano composite fibres by electrospinning. J Mater Sci 46, 3378–3386 (2011). https://doi.org/10.1007/s10853-010-5226-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5226-5

Keywords

Navigation