Skip to main content
Log in

Effect of titanium on microstructure and fluidity of Al–B4C composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of Ti on the interfacial reactions, microstructural characteristics, and the related fluidity of Al–12%B4C composites has been investigated. Without Ti addition, B4C decomposed heavily during holding, and a large quantity of reaction-induced compounds, Al3BC and AlB2, was generated. When Ti was added, a TiB2 layer was built surrounding B4C particle surfaces, which acted as a diffusion barrier to separate B4C from liquid aluminum. Thus, the decomposition of B4C slowed down remarkably. The fluidity of the composite without Ti was the shortest of all composites and deteriorated quickly during the holding time. The fluidity of the composite melt was improved significantly with increased Ti levels. The optimum Ti level for the best fluidity results lied between 1.0 and 1.5%. The solid particle volume and the particle agglomeration are the two main factors influencing the fluidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen X-G (2006) In: Gupta N, Hunt WH (eds) Proceedings of TMS (2006), symposium on Solidification process of metal matrix composites, San Antonio, March 2006, p 343

  2. Chen X-G, Hark R (2008) In: Yin W, Das SK (eds) Proceedings of TMS (2008), Symposium on Aluminum alloys: fabrication, characterization and applications, New Orleans, p 3

  3. Kennedy AR (2002) J Mater Sci 37:317. doi:10.1023/A:1013600328599

    Article  CAS  Google Scholar 

  4. Lloyd DJ (1997) In: Mallick PK (ed) Composites engineering handbook. Marcel Dekker, Inc, New York, p 631

    Google Scholar 

  5. Chawla KK (2005) In: Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology, vol 13/14. Wiley-VCH, Weinheim, p 137

    Google Scholar 

  6. Chen X-G (2005) In: Schlesinger ME (eds) EPD Congress 2005, TMS 2005, San Francisco, p 101

  7. Lloyd DJ, Lagacé HP, Mcleod AD (1990) In: Ishida H (ed) Controlled interphases in composite materials. Elsevier Science Publishing Co. Inc, New York, p 362

    Google Scholar 

  8. Viala JC, Bouix J, Gonzalez G, Esnouf C (1997) J Mater Sci 32:4559. doi:10.1023/A:1018625402103

    Article  CAS  Google Scholar 

  9. Shorowordi KM, Laoui T, Haseeb ASMA, Celis JP, Froyen L (2003) J Mater Proc Technol 142:738

    Article  CAS  Google Scholar 

  10. Fortin JY, Sheehy J, Jean C, Brisson P, Harnisch U, Doutre D, Chen X-G (2009) US Patent US 7,572,692 B2, 21 July 2009

  11. Kennedy AR, Brampton B (2001) Scripta Mater 44:1077

    Article  CAS  Google Scholar 

  12. Zhang Z, Chen X-G, Charette A (2007) J Mater Sci 42:7354. doi:10.1007/s10853-007-1554-5

    Article  CAS  Google Scholar 

  13. Zhang Z, Chen X-G, Charette A (2009) J Mater Sci 44:492. doi:10.1007/s10853-008-3097-9

    Article  CAS  Google Scholar 

  14. Flemings MC (1974) Solidification processing. McGraw-Hill Book Company, New York, p 219

    Google Scholar 

  15. Compbell J (1999) Casting. Butterworth Heinemanth, Oxford, p 75

    Google Scholar 

  16. Yarandi FM, Rohatgi PK, Ray S (1993) J Mater Eng Perform 2(3):359

    Article  CAS  Google Scholar 

  17. Rohatgi P, Asthana R (2001) JOM 53(9):9

    Article  CAS  Google Scholar 

  18. Surappa MK, Rohatgi PK (1981) Metall Mater Trans B 12B:327

    CAS  Google Scholar 

  19. Kolsgaard A, Brusethaug S (1994) Mater Sci Technol 10:545

    CAS  Google Scholar 

  20. Ravi VA, Frydrych DJ, Nagelberg AS (1994) AFS Trans 102:891

    CAS  Google Scholar 

  21. Ravi KR, Pillai RM, Pai BC, Chakraborty M (2007) Metall Mater Trans A 38:2531

    Article  Google Scholar 

  22. Gokhale AM (2004) In: Voort G (ed) ASM handbook, vol 9. The Materials Information Company, Materials Park, p 428

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC), Rio Tinto Alcan and the Centre Québécois de Recherche et de Développment de l’Aluminium (CQRDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Fortin, K., Charette, A. et al. Effect of titanium on microstructure and fluidity of Al–B4C composites. J Mater Sci 46, 3176–3185 (2011). https://doi.org/10.1007/s10853-010-5201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5201-1

Keywords

Navigation