Skip to main content
Log in

Particle cavitation in rubber toughened epoxies: the role of particle size

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rubber toughened epoxies are used in a wide range of applications including adhesives when toughness is a crucial property. It is well known that the cavitation of the rubber particles is an important process to optimise the toughness of such materials. This article describes the development of a predictive model to describe the dependence of rubber particle cavitation on particle size. The model is developed using a combination of experimental observations and finite element simulations. Predictions have been obtained for both uniaxial loading conditions and the triaxial loading conditions expected ahead of a crack. The model has been extended to consider the cavitation of nano-sized ‘rubber’ particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Jeong HY, Pan J (1995) Int J Solids Struct 32:3669. doi:10.1016/0020-7683(95)00009-Y

    Article  MATH  Google Scholar 

  2. Jeong HY, Pan J (1996) Polym Eng Sci 36:2306. doi:10.1002/pen.10629

    Article  CAS  Google Scholar 

  3. Bagheri R, Marouf BT, Pearson RA (2009) Polym Rev 49:201. doi:10.1080/15583720903048227

    Article  CAS  Google Scholar 

  4. Hsieh TH, Kinloch AJ, Masania K, Sohn Lee J, Taylor AC, Sprenger S (2010) J Mater Sci 45:1193. doi:10.1007/s10853-009-4064-9

    Article  CAS  ADS  Google Scholar 

  5. Kinloch AJ (2003) MRS Bull 28:445

    CAS  Google Scholar 

  6. Sue H-J, Yee AF (1996) Polym Eng Sci 36:2320. doi:10.1002/pen.10630

    Article  CAS  Google Scholar 

  7. Guild FJ, Kinloch AJ (1994) J Mater Sci Lett 13:629. doi:10.1007/BF00271216

    Article  CAS  Google Scholar 

  8. Guild FJ, Kinloch AJ (1995) J Mater Sci 30:1689. doi:10.1007/BF00351597

    Article  CAS  ADS  Google Scholar 

  9. Gehant S, Fond C, Schirrer R (2003) Int J Fract 122:161. doi:10.1023/B:FRAC.0000005790.35684.1d

    Article  CAS  Google Scholar 

  10. Huang Y, Kinloch AJ (1992) J Mater Sci 27:2753. doi:10.1007/BF00540702

    Article  CAS  ADS  Google Scholar 

  11. Pearson RA, Yee AF (1986) J Mater Sci 21:2475. doi:10.1007/BF01114294

    Article  CAS  ADS  Google Scholar 

  12. Yee AF, Pearson RA (1986) J Mater Sci 21:2462. doi:10.1007/BF01114293

    Article  CAS  ADS  Google Scholar 

  13. Pearson RA, Yee AF (1991) J Mater Sci 26:3828. doi:10.1007/BF01184979

    Article  CAS  ADS  Google Scholar 

  14. Fond C (2001) J Polym Sci B 39:2081. doi:10.1002/polb.1183

    Article  CAS  Google Scholar 

  15. Dompas D, Groeninckx G, Isogawa M, Hasegawa T, Kadokura M (1994) Polymer 35:4750. doi:10.1016/0032-3861(94)90728-5

    Article  CAS  Google Scholar 

  16. Lazzeri A, Bucknall CB (1995) Polymer 36:2895. doi:10.1016/0032-3861(95)94338

    Article  CAS  Google Scholar 

  17. Liu J, Sue HJ, Thompson ZJ, Bates FS, Dettloff M, Jacob G, Verghese N, Pham H (2008) Macromolecules 41:7616. doi:10.1021/ma801037q

    Article  CAS  ADS  Google Scholar 

  18. Kunz SC, Beaumont PWR (1981) J Mater Sci 16:3141. doi:10.1007/BF00540323

    Article  CAS  ADS  Google Scholar 

  19. Hibbitt, Karlsson, Sorensen (2002) ABAQUS/standard user manual: version 6.3

  20. Yasmin A, Daniel IM (2004) Polymer 45:8211. doi:10.1016/j.polymer.2004.09.054

    Article  CAS  Google Scholar 

  21. Mamlouk MS, Witczak MW, Kaloush KE, Hasan NJ (2005) Test Eval 33:118. doi:10.1520/JTE12592

    Google Scholar 

  22. Oba T (1999) PhD thesis. Imperial College London

  23. Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Polymer 24:1341. doi:10.1016/0032-3861(83)

    Article  CAS  Google Scholar 

  24. Duncan B, Dean GD (2003) Int J Adhes Adhes 23:141. doi:10.1016/S0143-7469(03)00006-X

    Article  CAS  Google Scholar 

  25. Huang Y, Kinloch AJ (1992) J Mater Sci Lett 11:484. doi:10.1007/BF00731112

    Article  CAS  Google Scholar 

  26. Guild FJ, Kinloch AJ, Taylor AC. A predictive model for the toughness of rubber toughened epoxies (in preparation)

  27. Levy N, Marcel PV, Ostergren WJ, Rice JR (1971) Int J Fract 7:143. doi:10.1007/BF00183802

    Article  Google Scholar 

  28. Rice JR (1968) J Appl Mech 35:379

    Google Scholar 

  29. Davy PJ, Guild FJ (1988) Proc R Soc A 418:95. doi:10.1098/rspa.1988.0075

    Article  ADS  Google Scholar 

  30. Bucknall CB, Karpodinis A, Zhang XC (1994) J Mater Sci 29:3377. doi:10.1007/BF00352036

    Article  CAS  ADS  Google Scholar 

  31. Lake GJ, Thomas AG (1967) Proc R Soc A 300:108. doi:10.1098/rspa.1967.0160

    Article  CAS  ADS  Google Scholar 

  32. Almer CJ, Pocius AV (1980) In: Proceedings of the SAMPE technical conference, Seattle, USA

  33. Gent AN (1990) Rubber Chem Technol 63:49

    Google Scholar 

  34. Bucknall CB, Paul DR (2009) Polymer 50:5539. doi:10.1016/j.polymer.2009.09.059

    Article  CAS  Google Scholar 

  35. Smit RJM, Brekelmans WAM, Meijer HEH (2000) J Mater Sci 35:2869. doi:10.1023/A:1004763606229

    Article  CAS  Google Scholar 

  36. Kim DS, Cho K, Kim JK, Park CE (1996) Polym Eng Sci 36:755. doi:10.1002/pen.10463

    Article  CAS  Google Scholar 

  37. Day RJ, Lovell PA, Wazzan AA (2001) Polym Int 50:849. doi:10.1002/pi.690

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was jointly funded by the Engineering and Physical Sciences Research Council, UK, and the Defence Science and Technology Laboratory, UK. We gratefully acknowledge the contributions to the Finite Element simulations from Dr Xiaowei Wang and Dr Nadia Balhi, University of Bristol, UK. We thank Dr Bernt Johnsen and Spyros Spyridoulias, Imperial College London, UK, and Dr G. D. Dean, National Physical Laboratory, UK, for providing experimental results. We thank Dr D. L. Hunston, National Institute of Standards and Technology, USA, and Professor J. G. Williams, Imperial College London, UK, for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Guild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guild, F.J., Kinloch, A.J. & Taylor, A.C. Particle cavitation in rubber toughened epoxies: the role of particle size. J Mater Sci 45, 3882–3894 (2010). https://doi.org/10.1007/s10853-010-4447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4447-y

Keywords

Navigation